K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

a) x³ -x/4 = 0 <=> x(x² - 1/4) = 0 <=> x(x-1/2)(x+1/2) = 0
VT là tích của 3 thừa số, VT là 0 nên ta có:
x = 0 hoặc (x-1/2) = 0 hoặc (x+1/2) = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -1/2

10 tháng 9 2019

hiha

2 tháng 10 2021

2a) pt <=> (x + 6)^2 = 0

<=> x = -6

b) pt <=> (4x - 1)^2 = 0

<=> x = 1/4

c) pt<=> (x + 1)^3 = 0

<=> x = -1

Bài 1:

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

Bài 2: 

a: Ta có: \(x^2+12x+36=0\)

\(\Leftrightarrow x+6=0\)

hay x=-6

b: Ta có: \(16x^2-8x+1=0\)

\(\Leftrightarrow4x-1=0\)

hay \(x=\dfrac{1}{4}\)

Bài 1: 

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)

\(=\left(x+2y+x-2y\right)^2\)

\(=4x^2\)

16 tháng 10 2021

\(x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(4x^2+4x+1-4x^2-12x-9=0\)

\(-8x-8=0\Leftrightarrow x=-1\)

\(\left(x-6\right)^2=0\)

\(x-6=0\Leftrightarrow x=6\)

c)\(x^2-12x=-36\)

\(x^2-12x+36=0\)

\(\left(x-6\right)^2=0\)

\(\Rightarrow x-6=0\)

........

 

25 tháng 8 2019

a) x = -1.                      b) x = 4 hoặc x = 5.

c) x = ± 2 .                  d) x = 1 hoặc x = 2.

1 tháng 8 2018

c) Với điều kiện: x ≠ 0 và x ≠ ±2.

Ta có: B = 0 ⇔ x + 1 = 0 ⇔ x = -1(nhận).

19 tháng 12 2021

a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

27 tháng 12 2019

1 tháng 11 2021

a) \(\Rightarrow x\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)

7 tháng 11 2024

vậy giỏi zữ vậy

5 tháng 1 2021

1.

Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)

Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)

\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):

\(-x^2+x+1=-x^2+3x\)

\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)

Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\)

Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)

Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)

Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ