Cho tam giác ABC có 3 góc nhộn các điểm theo thứ tự là trung điểm của BC và AC. Gọi H, O, G theo thứ tự là trực tâm, giao điểm các đường trung trực, trọng tâm tam giác ABC. Chứng minh a, \(\Delta ABH\approx\Delta MON\) b, \(\Delta HAG\approx\Delta OMG\) c, Ba điểm H, G, O thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là hình chiếu của A trên BC
F là hình chiếu của B trên AC
K là giao điểm của AE với MN
L là giao điểm của OM với AB
CM được MN//AB do có 2 trung điểm
Ta có AE vuông góc với BC và OM vuông góc với BC suy ra AE//OM
tương tự ON//BF
tứ giác AKML có AL//KM(MN//AB),AK//LM(AE//OM)
suy ra AKML là HBH suy ra LMK=LAK hay OMN=HAB
tương tự được ONM=HBA
suy ra tam giác OMN đồng dạng với tam giác HAB (g.g)
suy ra OM/AH=MN/AB
Mà MN/AB=1/2 do MN là đường trung bình của tam giác ABC
OM/AH=1/2
AH=2OM
ta có G là trọng tâm của tam giác ABC và AM là đường trung tuyến
suy ra GM/GA=/1/2
OM//AE suy ra OMG=HAG
xét tam giác OMG và tam giác HAG có
GM/GA=OM/AH=1/2
OMG=HAG
suy ra tam giác OMG đồng dạng với tam giác HAG (c.g.c)
Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,Ai Đó Không Phải Anh,
ghghhggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh