Bài 3: Cho \(\Delta ABC\)cân tại A ( AB > BC ), BD là phân giac của goc ABC. Qua D vẽ đường thẳng vuông goc vơi BD, đường thẳng này căt BC tại E. Chưng minh: BE = 2CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
ΔBDE vuông tại D
gọi F là trung điểm của BE
⇒DF = \(\dfrac{1}{2}\) BE =BF
ΔBDF có BF = FD → ΔBDF cân tại F
→\(\widehat{B}\)\(_1\) = \(\widehat{D}\)\(_2\)
lại có \(\widehat{B}\)\(_1\)= \(\widehat{B}\)\(_2\)
⇒\(\widehat{B}\)\(_2\) = \(\widehat{D}\)\(_2\)
mà 2 góc này ở vị trí so le trong ➜ AB // DF
⇒ \(\widehat{B}\) = \(\widehat{F}\)\(_1\) ( 2 góc đồng vị )
mặt khác \(\widehat{B}\) = \(\widehat{C}\)\(_1\) ( ΔABC cân tại A )
⇒ \(\widehat{F}\) \(_1\) = \(\widehat{C}\)\(_1\) ⇒ ΔCDF cân tại D ⇒ DF = DC
mà DF = \(\dfrac{1}{2}\) BE
⇒ DC = \(\dfrac{1}{2}\) BE ⇒ BE = 2DC ( điều phải chứng minh )
a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :
AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12
b)Xét tam giác ABE và DBE có :
Góc A=góc B(=90 độ)
BA=BD(gt)
Chung cạnh BE
suy ra tam giác ABE= BDE (c.g.c)
c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )
Suy ra BE là tia phân giác cua góc ABC
Xét tam giác BDK và BAC có :
Chung góc B
BA=BD(gt)
góc D = góc A (=90 độ)
suy ra tam giác BDK=tam giác BAC (g.c.g)
suy ra AC=DK (2 cạnh tương ứng )
( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )
1) Theo bài ra ta có:
BD//AC; AB//CD
=> ABDC là hình bình hành
mà AB=AC
=> ABCD là hình thoi
Ta lại có \(\widehat{A}=90^o\)
=> ABCD là vuông.
b) Hai đường chéo của hình vuông cắt nhau tại trung điểm mỗi đường
Gọi O' là giao điểm của BC và AD
=> O' là trung điểm BC
=> O' trùng điểm O
=> O là trung điểm AD
=> A, O, D thẳng hàng
Xin lỗi mấy bạn . Mình bị thiếu chỗ (cho tam giác ABC vuông tại A)
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
suy ra AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
suy ra AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90*
do đó ^DAB+^BAH+ ^HAC+^CAE=180*
tức là D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đối xứng với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
nên tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra ^ADB=^AHB=90*
tương tự có ^AEC=90*
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
nên BAEC là hình thang vuông.
d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
công vế với vế của (5) và (6) ta có BD+CE=BH+CH
hay BD+CE=BC
k mik nha bn