K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1-21+x=0\)

\(\Leftrightarrow x^2-3x-20=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-20\right)=9+80=89\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3+\sqrt{89}}{2}\\x_2=\dfrac{3-\sqrt{89}}{2}\end{matrix}\right.\)

30 tháng 7 2021

1)\(\sqrt{21-x}+1=x\)

\(\Leftrightarrow21-x=\left(x-1\right)^2\)

\(\Leftrightarrow21-x=x^2-2x+1\)

\(\Leftrightarrow x^2-x-20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)

2)\(\sqrt{8-x}+2=x\)

\(\Leftrightarrow8-x=\left(x-2\right)^2\)

\(\Leftrightarrow8-x=x^2-4x+4\)

\(\Leftrightarrow x^2-3x-4=0\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)

 

 

28 tháng 8 2017

\(\left(\sqrt{x^2+16}-5\right)\)\(-3\left(x-3\right)-\left(\sqrt{x^2+7}-4\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x^2+16}-5\right)\left(\sqrt{x^2+16}+5\right)}{\sqrt{x^2+16}+5}\)\(-3\left(x-3\right)-\frac{\left(\sqrt{x^2+7}-4\right)\left(\sqrt{x^2+7}+4\right)}{\sqrt{x^2+7}+4}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{x^2+16}+5}-3-\frac{1}{\sqrt{x^2+7}+4}\right)=0\)

ben trong ngoac bn tu xu li nhe

\(\Rightarrow x=3\)

14 tháng 10 2016

B1 Tìm ĐKXĐ

B2 Đặt pt đã cho là pt (1)=>pt (1) <=>\(\frac{x+3}{\sqrt{4x-1}-\sqrt{3x-2}}\) =5

B3 Trục căn thứ ở mẫu => (1) <=> \(\sqrt{4x+1}+\sqrt{3x-2}\)=5

B4 Bình phương 2 vế  được (1)<=>\(26-7x\)=\(2\sqrt{12x^2-5x-2}\)

B5 Tiếp tục bình phương hai vế ta tìm được x=2 (Thỏa mãn)

14 tháng 10 2016

Bạn bình phương lên là ra

Kết quả X=2

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Bài 1:

Vì $a\geq 1$ nên:

\(a+\sqrt{a^2-2a+5}+\sqrt{a-1}=a+\sqrt{(a-1)^2+4}+\sqrt{a-1}\)

\(\geq 1+\sqrt{4}+0=3\)

Ta có đpcm

Dấu "=" xảy ra khi $a=1$

 

AH
Akai Haruma
Giáo viên
29 tháng 5 2021

Bài 2:
ĐKXĐ: x\geq -3$

Xét hàm:

\(f(x)=x(x^2-3x+3)+\sqrt{x+3}-3\)

\(f'(x)=3x^2-6x+3+\frac{1}{2\sqrt{x+3}}=3(x-1)^2+\frac{1}{2\sqrt{x+3}}>0, \forall x\geq -3\)

Do đó $f(x)$ đồng biến trên TXĐ

\(\Rightarrow f(x)=0\) có nghiệm duy nhất

Dễ thấy pt có nghiệm $x=1$ nên đây chính là nghiệm duy nhất.

16 tháng 8 2017

a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

ĐK:tự xác định 

\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)

Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)

\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)

b nghiệm xấu quá để mình xem lại :v

\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)

\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)

đến đây thì chịu 

tìm đc 1 nghiệm là -1;1,nên bình phương lên

25 tháng 8 2017

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\frac{x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\left(\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{x+\sqrt{x}-1}{\sqrt{x}}\)

16 tháng 4 2020

a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\) => bpt vô nghiệm

b/ ĐKXĐ: \(x>1\)

\(bpt\Leftrightarrow x-2< 2\Leftrightarrow x< 4\)

\(\Rightarrow1< x< 4\)

c/ \(\frac{x+2}{3}-2x-2>0\)

\(\Leftrightarrow\frac{x+2-6x-6}{3}>0\Leftrightarrow x+2-6x-6>0\Leftrightarrow x< -\frac{4}{5}\)

d/ \(bpt\Leftrightarrow\frac{3x+5}{2}-\frac{x+2}{3}-x-1\le0\)

\(\Leftrightarrow\frac{9x+15-2x-4-6x-6}{6}\le0\)

\(\Leftrightarrow x\le-5\)

9 tháng 2 2020

\(Đkxđ:x\ge0\)

Ta có: Bất phương trình tương đương với:

\(\left(1+\sqrt{x}\right)\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\right)=2\)

Áp dụng BĐT Cô - si ta có:

\(\frac{1}{\sqrt{3x+1}}=\sqrt{\frac{1}{x+1}.\frac{x+1}{3x+1}}\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{x+1}{3x+1}\right)\)

\(\sqrt{\frac{x}{3x+1}}=\sqrt{\frac{1}{2}.\frac{2x}{3x+1}}\le\frac{1}{2}\left(\frac{1}{2}+\frac{2x}{3x+1}\right)\)

\(\Rightarrow\frac{1+\sqrt{x}}{\sqrt{3x+1}}\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{1}{2}+1\right)=\frac{1}{2}\left(\frac{1}{x+1}+\frac{3}{2}\right)\left(1\right)\)

\(\frac{1}{\sqrt{x+3}}=\sqrt{\frac{1}{2}.\frac{2}{x+3}}\le\frac{1}{2}\left(\frac{1}{2}+\frac{2}{x+3}\right)\)

\(\frac{\sqrt{x}}{\sqrt{x+3}}=\sqrt{\frac{x}{x+1}.\frac{x+1}{x+3}}\le\frac{1}{2}\left(\frac{x}{x+1}+\frac{x+1}{x+3}\right)\)

\(\Rightarrow\frac{1+\sqrt{x}}{\sqrt{x+3}}\le\frac{1}{2}\left(\frac{x}{x+1}+\frac{3}{2}\right)\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow\left(1+\sqrt{x}\right)\left(\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\right)\le\frac{1}{2}\left(\frac{1}{x+1}+\frac{x}{x+1}+3\right)=2\)

Đẳng thức xảy ra \(\Leftrightarrow x=1\)

Vậy nghiệm của pt là \(x=1\)