Giúp mình những bài này nhé !
Tìm x :
a.\(2^{x+2}-2^x=96\)
b.\(7^{x+2}+2\cdot7^{x-1}=345\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x + 2 - 2x = 96
=> 2x . 4 - 2x = 96
=> 2x . (4 - 1) = 96
=> 2x . 3 = 96
=> 2x = 96 : 3
=> 2x = 32
=> 2x = 25
=> x = 5
a) 2x + 2 - 2x = 96
=> 2x. 22 - 2x = 96
=> 2x( 4 - 1 ) = 96
=> 2x = 96 : 3
=> 2x = 25
=> x = 5
a. \(8x\left(x-2007\right)-2x+4034=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-2017=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2017\\4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy x=2017 hoặc x=1/4
b.\(\dfrac{x}{2}+\dfrac{x^2}{8}=0\)
\(\Rightarrow\dfrac{x}{2}\left(1+\dfrac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{2}=0\\1+\dfrac{x}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy x=0 hoặc x=-4
c.\(4-x=2\left(x-4\right)^2\)
\(\Rightarrow\left(4-x\right)-2\left(x-4\right)^2=0\)
\(\Rightarrow\left(4-x\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x=4 hoặc x=7/2
d.\(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x-2\right)\left(x^2+3\right)=0\)
Nxet: (x2+3)>0 với mọi x
=> x-2=0 <=>x=2
Vậy x=2
a, 8\(x\).(\(x-2007\)) - 2\(x\) + 4034 = 0
4\(x\)(\(x\) - 2007) - \(x\) + 2017 = 0
4\(x^2\) - 8028\(x\) - \(x\) + 2017 = 0
4\(x^2\) - 8029\(x\) + 2017 = 0
4(\(x^2\) - 2. \(\dfrac{8029}{8}\) \(x\) +( \(\dfrac{8029}{8}\))2) - (\(\dfrac{8029}{4}\))2 + 2017 = 0
4.(\(x\) + \(\dfrac{8029}{8}\))2 = (\(\dfrac{8029}{4}\))2 - 2017
\(\left[{}\begin{matrix}x=-\dfrac{8029}{8}+\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\\x=-\dfrac{8029}{8}-\dfrac{1}{2}.\sqrt{\left(\dfrac{8029}{4}\right)^2-2017}\end{matrix}\right.\)
a) \(\left(x-1\right)^3+3\left(x+1\right)^2=\left(x^2-2x+4\right)\)
\(\Leftrightarrow x^3+9x+2=x^3+8\)
\(\Leftrightarrow x^3+9x=x^3+8-2\)
\(\Leftrightarrow x^3+9x=x^3+6\)
\(\Leftrightarrow x^3+9x=x^3+6x-x^3\)
\(\Leftrightarrow\frac{2}{3}\)
b) \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow x^2-4=8x-16\)
\(\Leftrightarrow x^4-4=8x-16+16\)
\(\Leftrightarrow x^2+12=8x\)
\(\Leftrightarrow x^2+12=8x-8x\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
\(\frac{1}{2}\cdot2^x+2^x\cdot2^2=2^8+2^5\)
\(2^x\left(\frac{1}{2}+4\right)=2^8+2^5\)
\(2^x\cdot\frac{9}{2}=288\)
\(2^x=64\)
\(2^x=2^6\)
\(x=6\)
\(9^x:3^x=3^7\)
\(3^{2x}:3^x=3^7\)
\(3^x=3^7\)
\(x=7\)
\(7^{x+2}+2\cdot7^{x-1}=345\)
\(7^x\cdot7^2+2\cdot7^x:7=345\)
\(7^x\left(7^2+\frac{2}{7}\right)=345\)
\(7^x\cdot\frac{345}{7}=345\)
\(7^x=7\)
\(x=1\)
a) 1/2.2^x + 2^x+2 = 256 + 32
1/2.2^x + 2^2.2^x=288
2^x(1/2+4)= 288
2^x.4,5=288
2^x= 288:4,5
2^x=64=2^6
x=6
a)
(2x+1)2=25
=> \(\left[\begin{array}{nghiempt}2x+1=5\\2x+1=-5\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}2x=4\\2x=-6\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
d)
(x-1)3=-125
=> x-1=-5
=> x=-4
còn câu b và c bạn viết đề rõ hơn nha
a.
\(7^{x+2}+2\times7^{x-1}=345\)
\(7^x\times7^2+2\times7^x\div7=345\)
\(7^x\times\left(7^2+\frac{2}{7}\right)=345\)
\(7^x\times\frac{345}{7}=345\)
\(7^x=345\div\frac{345}{7}\)
\(7^x=345\times\frac{7}{345}\)
\(7^x=7\)
\(x=1\)
b.
\(2^{x+2}-2^x=96\)
\(2^x\times\left(2^2-1\right)=96\)
\(2^x\times3=96\)
\(2^x=\frac{96}{3}\)
\(2^x=32\)
\(2^x=2^5\)
\(x=5\)
\(a,7^{x+2}+2.7^{x-1}=345\Rightarrow7^x.49+\frac{2}{7}.7^x=345\Rightarrow7^x\left(49+\frac{2}{7}\right)=345\Rightarrow7^x.\frac{345}{7}=345\Rightarrow7^x=345:\frac{345}{7}=7^1\Rightarrow x=1\)
\(b,2^{x+2}-2^x=96\Rightarrow2^x.4-2^x=96\Rightarrow2^x\left(4-1\right)=96\Rightarrow2^x.3=96\Rightarrow2^x=96:3=32\Rightarrow2^x=2^5\Rightarrow x=5\)
\(a,7^{x+2}+2.7^{x-1}=345=>7^{x-1+3}+2.7^{x-1}=345=>7^{x-1}.7^3+2.7^{x-1}=345\)
\(=>\left(7^3+2\right).7^{x-1}=345=>345.7^{x-1}=345=>7^{x-1}=1=7^0=>x-1=0=>x=1\)
\(b,2^{x+2}-2^x=96=>2^x.2^2-2^x=96=>2^x.\left(4-1\right)=96=>2^x.3=96=>2^x=32=2^5=>x=5\)
Bài 1:
a) \(x.\dfrac{3}{4}=\dfrac{9}{14}\)
\(\Rightarrow x=\dfrac{9}{14}:\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{6}{7}\)
b) \(x:\dfrac{5}{9}=\dfrac{3}{10}\)
\(\Rightarrow x=\dfrac{3}{10}.\dfrac{5}{9}\)
\(\Rightarrow x=\dfrac{1}{6}\)
a) \(2^{x+2}-2^x=96\)
⇒ \(2^x.2^2-2^x=96\)
⇒ \(2^x.\left(2^2-1\right)=96\)
⇒ \(2^x.3=96\)
⇒ \(2^x=96:3\)
⇒ \(2^x=32\)
⇒ \(2^x=2^5\)
⇒ \(x=5\)
Vậy \(x=5.\)
b) \(7^{x+2}+2.7^{x-1}=345\)
⇒ \(7^{x-1}.7^3+2.7^{x-1}=345\)
⇒ \(7^{x-1}.\left(7^3+2\right)=345\)
⇒ \(7^{x-1}.345=345\)
⇒ \(7^{x-1}=345:345\)
⇒ \(7^{x-1}=1\)
⇒ \(7^{x-1}=7^0\)
⇒ \(x-1=0\)
⇒ \(x=0+1\)
⇒ \(x=1\)
Vậy \(x=1.\)
Chúc bạn học tốt!