K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

a) Chú ý x = 0 không phải là nghiệm. Xét x khác 0. Chia cả hai vế của pt cho x2. Ta thu được:

PT \(\Leftrightarrow x^2+2x-4-\frac{2}{x}+\frac{1}{x^2}=0\)

\(\left(x^2-2.x^2.\frac{1}{x^2}+\frac{1}{x^2}\right)+2\left(x-\frac{1}{x}\right)-2=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+2\left(x-\frac{1}{x}\right)-2=0\)

Đặt \(x-\frac{1}{x}=a\Rightarrow a^2+2a-2=0\Leftrightarrow\left[{}\begin{matrix}a=\sqrt{3}-1\\b=-\sqrt{3}-1\end{matrix}\right.\)

Giải nốt:v

b) Tương tự

8 tháng 9 2019

Cách khác cho câu b:

b) \(PT\Leftrightarrow\left(x-1\right)^2\left(x^2-x+1\right)=0\)

Ta có \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) với mọi x.

Do đó x = 1

6 tháng 6 2018

Bài 1. a) 4x - 3 = 0

⇔ x = \(\dfrac{3}{4}\)

KL.....

b) - x + 2 = 6

⇔ x = - 4

KL...

c) -5 + 4x = 10

⇔ 4x = 15

⇔ x = \(\dfrac{15}{4}\)

KL....

d) 4x - 5 = 6

⇔ 4x = 11

⇔ x = \(\dfrac{11}{4}\)

KL....

h) 1 - 2x = 3

⇔ -2x = 2

⇔ x = -1

KL...

Bài 2. a) ( x - 2)( 4 + 3x ) = 0

⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)

KL......

b) ( 4x - 1)3x = 0

⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)

KL.....

c) ( x - 5)( 1 + 2x) = 0

⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)

KL.....

d) 3x( x + 2) = 0

⇔ x = 0 hoặc x = -2

KL.....

6 tháng 6 2018

Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0

⇔ x - 10 ≥ 0

⇔ x ≥ 10

0 10 b) 3 - 2( 2x + 3) ≤ 9x - 4

⇔ - 4x - 3 ≤ 9x - 4

⇔ 13x ≥1

⇔ x ≥ \(\dfrac{1}{13}\)

0 1/13

3 tháng 3 2020

a) \(2x^3+3x^2-8x-12=0\)

\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)

\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\)\(x-2=0\)

hoặc \(x+2=0\)

hoặc \(2x+3=0\)

\(\Leftrightarrow\)\(x=2\)

hoặc \(x=-2\)

hoặc \(x=-\frac{3}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)

b) \(x^3-4x^2-x+4=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\)\(x-4=0\)

hoặc \(x-1=0\)

hoặc \(x+1=0\)

\(\Leftrightarrow\)\(x=4\)

hoặc \(x=1\)

hoặc \(x=-1\)

Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)

c) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)

d) \(x^4-3x^3+3x^2-x=0\)

\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)^3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)

e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)

g) \(x^3+3x^2+3x+1=4x+4\)

\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)  hoặc   \(x=1\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)

b) \(x^3-4x^2-x+4=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)

c) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)

a: =>x^2+4x-4x+1=0

=>x^2+1=0

=>Loại

b: =>2x-6+4=2x+2

=>-2=2(loại)

c: =>2(x+3)-2x-1=1

=>6-1=1

=>5=1(loại)

d =>x+3=0

=>x=-3(loại)

e: =>x^2-3x^2+3x-3x-2=0

=>-2x^2-2=0

=>x^2+1=0

=>Loại

31 tháng 8 2015

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0 

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52 

=> 19x = -4

=> x = -4/19

d/ 20x2 - 16x - 34 = 10x2 + 3x - 34

=> 10x2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 

hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10

Vậy x = 0 ; x = 19/10

2 tháng 1 2016

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52

=> 19x = -4

=> x = -4/19

d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34

=> 10x 2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 hoặc 10x - 19 = 0

=> 10x = 19

=> x = 19/10

Vậy x = 0 ; x = 19/10 

9 tháng 6 2021

a) \(2\chi-3=3\left(\chi+1\right)\)

\(\Leftrightarrow2\chi-3=3\chi+3\)

\(\Leftrightarrow2\chi-3\chi=3+3\)

\(\Leftrightarrow\chi=-6\)

Vậy phương trình có tập nghiệm S= \(\left\{-6\right\}\)

\(3\chi-3=2\left(\chi+1\right)\)

\(\Leftrightarrow3\chi-3=2\chi+2\)

\(\Leftrightarrow3\chi-2\chi=2+3\)

\(\Leftrightarrow\chi=5\)

Vậy phương trình có tập nghiệm S= \(\left\{5\right\}\)

b) \(\left(3\chi+2\right)\left(4\chi-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+2=0\\4\chi-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-2\\4\chi=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-2}{3}\\\chi=\dfrac{5}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-2}{3};\dfrac{5}{4}\right\}\)

\(\left(3\chi+5\right)\left(4\chi-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+5=0\\4\chi-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-5\\4\chi=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-5}{3}\\\chi=\dfrac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-5}{3};\dfrac{1}{2}\right\}\)

c) \(\left|\chi-7\right|=2\chi+3\)

Trường hợp 1: 

Nếu \(\chi-7\ge0\Leftrightarrow\chi\ge7\)

Khi đó:\(\left|\chi-7\right|=2\chi+3\)

 \(\Leftrightarrow\chi-7=2\chi+3\)

\(\Leftrightarrow\chi-2\chi=3+7\)

\(\Leftrightarrow\chi=-10\) (KTMĐK)

Trường hợp 2:

Nếu \(\chi-7\le0\Leftrightarrow\chi\le7\)

Khi đó: \(\left|\chi-7\right|=2\chi+3\)

\(\Leftrightarrow-\chi+7=2\chi+3\)

\(\Leftrightarrow-\chi-2\chi=3-7\)

\(\Leftrightarrow-3\chi=-4\)

\(\Leftrightarrow\chi=\dfrac{4}{3}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{4}{3}\right\}\)

\(\left|\chi-4\right|=5-3\chi\)

Trường hợp 1:  

Nếu \(\chi-4\ge0\Leftrightarrow\chi\ge4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow\chi-4=5-3\chi\)

\(\Leftrightarrow\chi+3\chi=5+4\)

\(\Leftrightarrow4\chi=9\)

\(\Leftrightarrow\chi=\dfrac{9}{4}\)(KTMĐK)

Trường hợp 2: Nếu \(\chi-4\le0\Leftrightarrow\chi\le4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow-\chi+4=5-3\chi\)

\(\Leftrightarrow-\chi+3\chi=5-4\)

\(\Leftrightarrow2\chi=1\)

\(\Leftrightarrow\chi=\dfrac{1}{2}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{1}{2}\right\}\)

 

 

 

 

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

a: (3x-2)(4x+5)=0

=>3x-2=0 hoặc 4x+5=0

=>x=2/3 hoặc x=-5/4

b: (2,3x-6,9)(0,1x+2)=0

=>2,3x-6,9=0 hoặc 0,1x+2=0

=>x=3 hoặc x=-20

c: =>(x-3)(2x+5)=0

=>x-3=0 hoặc 2x+5=0

=>x=3 hoặc x=-5/2

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha