K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

Ta có:

\(\frac{a}{b}=\frac{a\left(b+2017\right)}{b\left(b+2017\right)}=\frac{ab+a2017}{b\left(b+2017\right)}\left(1\right)\)

\(\frac{a+2017}{b+2017}=\frac{b\left(a+2017\right)}{b\left(b+2017\right)}=\frac{ab+b2017}{b\left(b+2017\right)}\left(2\right)\)

Từ (1) và (2), suy ra:

_Nếu a>b thì \(\frac{ab+a2017}{b\left(b+2017\right)}>\frac{ba+b2017}{b\left(b+2017\right)}\Leftrightarrow\frac{a}{b}>\frac{a+2017}{b+2017}\)

_Nếu a<b thì\(\frac{ab+a2017}{b\left(b+2017\right)}< \frac{ba+b2017}{b\left(b+2017\right)}\Leftrightarrow\frac{a}{b}< \frac{a+2017}{b+2017}\)

_Nếu a=b thì\(\frac{ab+a2017}{b\left(b+2017\right)}=\frac{ba+b2017}{b\left(b+2017\right)}\Leftrightarrow\frac{a}{b}=\frac{a+2017}{b+2017}\)

8 tháng 9 2019

Cái này bạn phải có điều kiện của a và b

Ta có a(b+2014)=ab+2014a;b(a+2014)=ab+2014b

Với a>b thì ab+2014a>ab+2014b

\(\Rightarrow a\left(b+2014\right)>b\left(a+2014\right)\)

\(\Rightarrow \frac{a}{b}>\frac{a+2014}{b+2014}\)

Với a<b và a=b thì bạn lập luận như trên thôi

16 tháng 4 2016

A=\(\frac{2014}{2014^a}+\frac{2014}{2014^b}\)=B=\(\frac{2013}{2015^a}\)+\(\frac{2015}{2013^b}\)

17 tháng 4 2016

Ta có: 2014/\(2014^a\)+2014/2014^b= 2013/2014^a + 1/2014^a +2015/2014^a - 1/2014^a

                                                        =(2013/2014^a + 2015/2014^b) + ( 1/2014^a + 1/2014^b)

                                                       =                   B                                 + (1/2014^a + 1/2014^b)

   *Nếu a=b thì A=B

   *Nếu a>b thì (1/2014^a + 1/2014^b) >0

                      \(\Rightarrow\) A< B

   *Nếu a<b thì (1/2014^a + 1/2014^b)>0

                     \(\Rightarrow\) A>B

13 tháng 4 2017

a)\(\frac{2013}{2015}< \frac{2014}{2016}\)

b)\(\frac{2013+2014}{2014+2015}< \frac{2013}{2014}+\frac{2014}{2015}\)

14 tháng 4 2019

ta có tính chất \(\frac{a}{b}\)>1 suy ra \(\frac{a.m}{b.m}\).........

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

27 tháng 3 2017

Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B

Ta có:

2014A=20142014+ 2014/20142014+1=1+2013/20142014+1

2014B=20142013+2014/20142013+1=1+2013/20142013+1

vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B

suy ra A<B

13 tháng 2 2018

A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)

B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)

Rồi bạn tự so sánh nha

6 tháng 5 2017

A>B nha bn

Ta có:

\(\frac{2011}{2014}+\frac{3}{2014}=1\)

\(\frac{2014}{2017}+\frac{3}{2017}=1\)

Mà \(\frac{3}{2014}>\frac{3}{2017}\)

nên \(\frac{2011}{2014}< \frac{2014}{2017}\)

1 tháng 7 2016

Sai rồi nhé bạn 

1 tháng 7 2016

trà my Thế bạn làm thế nào

23 tháng 2 2017

Ta có :

\(\frac{2014^{2015}+1}{2014^{2015}+1}\)\(=1\)

\(\frac{2014^{2014}+1}{2014^{2013}+1}\)\(>1\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

2 tháng 7 2017

Ta có : A = \(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\) 

           B = \(\frac{2^{2014}+2}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)

Vì : \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)

Nên A > B 

2 tháng 7 2017

Viết hẳn từng bước đi bạn