Tìm x,y biết:
\(\frac{2}{x-1}=\frac{3}{y-2}=\frac{4}{z.3}\)và 2x +3y-z=95
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2.\left(x-1\right)+3.\left(y-2\right)-\left(z-3\right)}{2.2+3.3-4}\)
\(=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{9}=\frac{95-5}{9}=10\)
suy ra: \(\frac{x-1}{2}=10\Rightarrow x-1=20\Rightarrow x=21\)
\(\frac{x-2}{3}=10\Rightarrow x-2=30\Rightarrow x=32\)
\(\frac{x-3}{4}=10\Rightarrow x-3=40\Rightarrow x=43\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{95-5}{9}=10\)
+\(\frac{x-1}{2}=10;x-1=21;x=19\)
+\(\frac{y-2}{3}=10;y-2=30;y=32\)
+ \(\frac{z-3}{4}=10;z-3=40;z=43\)
Vậy x = 19 ; y = 32 ; z = 43
Tớ chỉ làm câu b thôi nhé
Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần
92:(15+10+21)=2
x=2.10=20
y=2.15=30
z=2.21=42
a,x-1/2=y-2/3=z-3/4
theo tính chất dãy tỉ số bằng nhau, ta có:\
x-1/2=y-2/3=z-3/4=2x-2/4=3y-6/9=2x-2+3y-6-z+3/4+9-4
=(2x+3y-z)-(2+6-3)/9=95-5/9=10
Suy ra x-1=20; y-2=30; z-3=40
=> x=21;y=32;z=43
b,|1-2x|+|2-3y|+|3-4z|=0
Ta có |1-2x|>=0; |2-3y|>=0; |3-4z|>=0
=>|1-2x|+|2-3y|+|3-4z|>=0
mà theo đề bài |1-2x|+|2-3y|+|3-4z|=0
Suy ra 1-2x=0 và 2-3y=0 và 3-4z=0
=> x=1/2;y=2/3;z=3/4
c,x+y=x:y=5*(x-y)
từ x+y=5*(x-y)
=> x+y=5x-5y
=>-4x=-6y
=> x/y=3/2
mà x/y=x+y=3/2
lại có x/y=5*(x-y)=3/2
=>x-y=3/10
Suy ra x=(3/2+3/10):2=9/10
y=(3/2-3/10):2=3/5
Vậy................
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
Theo tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
\(\frac{2x-2}{4}+\frac{3y-6}{9}-\frac{z-3}{4}\)\(=\frac{95}{9}\)
=> \(x=\frac{190}{9}\)\(y=\frac{95}{3}\)\(z=\frac{380}{9}\)
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{-z+3}{-4}=\frac{2x+3y-z-5}{9}=\frac{90}{9}=10\)
x=;y=;z= tu tinh
\(\frac{2}{x-1}=\frac{3}{y-2}=\frac{4}{z.3}\)
=> \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{3.z}{4}\)
=> \(\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{3z:3}{4:3}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z}{\frac{4}{3}}=\frac{2x-2+3y-6-z}{4+9-\frac{4}{3}}=\frac{\left(2x+3y-z\right)-8}{\frac{35}{3}}=\frac{95-8}{\frac{35}{3}}=\frac{261}{35}\)
=> \(\hept{\begin{cases}\frac{2x-2}{4}=\frac{261}{35}\\\frac{3y-6}{9}=\frac{261}{35}\\\frac{z}{\frac{4}{3}}=\frac{261}{35}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{557}{35}\\y=\frac{853}{35}\\z=\frac{348}{35}\end{cases}}}\)