Cho 2 số: \(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}\)và \(B=101\). So sánh A và B.
GIẢI NHANH GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách chứng minh đề sai : Số số phân số là
(10101-3):5+1=\(\frac{10103}{5}\)
Ta có\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{10100}\right)\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
100 số 1
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+\left(1-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}\)
\(A=101-\frac{1}{101}< 101=B\)
\(\Rightarrow A< B\)
Vậy A<B
Học tôt nha
Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{100\cdot101}\)
=1-1/2+1/2-1/3+...+1/100-1/101
=1-1/101=100/101
b: \(A=1+\dfrac{1}{2}+1+\dfrac{1}{6}+1+\dfrac{1}{12}+...+1+\dfrac{1}{10100}\)
\(=100+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\)
\(=101-\dfrac{1}{101}< 101\)
ta có: 2 = 1 x 2
6 = 2 x 3
12 = 3 x 4
...
10100 = 100 x 101
=> Số số hạng của dãy 2;6;12;...;10100 là: ( 101 -1) : 1 = 100 ( số hạng)
ta có: \(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}\)
\(A=1+\frac{1}{2}+1+\frac{1}{6}+1+\frac{1}{12}+...+1+\frac{1}{10100}\)
\(A=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\right)\) ( có 100 số 1)
\(A=100+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\right)\)
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+\left(1-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101\)
=> A < B
a) \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{100x101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
\(B=81.\left(\frac{12-\frac{12}{7}-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}\right).\frac{158158158}{711711711}\)
\(\Leftrightarrow B=81.\left(\frac{12\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}{4\left(1-\frac{1}{7}-\frac{1}{289}-\frac{1}{85}\right)}:\frac{5\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}{6\left(1+\frac{1}{13}+\frac{1}{169}+\frac{1}{91}\right)}\right).\frac{158\left(1001001\right)}{711\left(1001001\right)}\)
\(\Leftrightarrow B=81\left(\frac{12}{3}:\frac{5}{6}\right).\frac{158}{711}\)
\(\Leftrightarrow B=81\left(3.\frac{6}{5}\right).\frac{2}{9}\)
\(\Leftrightarrow B=81.\frac{18}{5}.\frac{2}{9}\)
\(\Leftrightarrow B=\frac{324}{5}\)
Hok tốt!!
Câu hỏi của Lê Tiến Cường - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{10101}{10100}=\frac{2+1}{2}+\frac{6+1}{6}+\frac{12+1}{12}+...+\frac{10100+1}{10100}\)
\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+....+\left(1+\frac{1}{10100}\right)\)
\(A=\left(1+\frac{1}{1\times2}\right)+\left(1+\frac{1}{2\times3}\right)+\left(1+\frac{1}{3\times4}\right)+...+\left(1+\frac{1}{100\times101}\right)\)
\(A=\left(1+1+1+....+1\right)+\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{100\times101}\right)\)
\(A=100+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{100}-\frac{1}{101}\right)\)
\(A=100+1-\frac{1}{101}=101-\frac{1}{101}< 101=B\)
\(\Rightarrow A< B\)
So easy