Cho các số dương a,b<1 thoả mãn a+b=\(\sqrt{1-a^2}\)+\(\sqrt{1-\text{b}^2}\)
CMR:\(a^2+b^2\)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(ab+bc+ca=1\) và a,b,c>0 ta có:
\(\left\{{}\begin{matrix}\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(c+a\right)}\\\sqrt{b^2+1}=\sqrt{\left(b+c\right)\left(a+b\right)}\\\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(b+c\right)}\end{matrix}\right.\). Do đó:
\(\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}=a+b\)
Tương tự: \(\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}=b+c\) ; \(\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}=c+a\)
\(\Rightarrow P=2\left(a+b+c\right)\)
\(\Rightarrow P^2=4\left(a+b+c\right)^2\ge4.3\left(ab+bc+ca\right)=4.3.1=12\)
\(\Rightarrow P\ge2\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)
Vậy \(MinP=2\sqrt{3}\)
Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)
\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)
\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)
\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)
\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)
=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)
Tương tự ta cũng chứng minh đc:
\(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)
\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)
=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)
\(=\sqrt{5}\left(a+b+c\right)\)
Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)
Lời giải:
Áp dụng BĐT AM-GM:
$\text{VT}=\sqrt{ab+c(a+b+c)}+\sqrt{bc+a(a+b+c)}+\sqrt{ca+b(a+b+c)}$
$=\sqrt{(c+a)(c+b)}+\sqrt{(a+b)(a+c)}+\sqrt{(b+a)(b+c)}$
$\leq \frac{c+a+c+b}{2}+\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}$
$=2(a+b+c)=2$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$