Cho tam giác ABC M N P lần lượt là trung điểm của BC CA AB và điểm M bất kì chứng minh vectơ AB + vectơ BC + vectơ CP = vectơ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
Cộng vế:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)
b. Từ câu a ta có:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)
\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}\)
\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)\)
=0
Do M và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác AB.
Đáp án B
Từ giả thiết ta có PN là đường trung bình tam giác ABC
\(\Rightarrow\overrightarrow{PN}=\dfrac{1}{2}\overrightarrow{BC}=\overrightarrow{BM}\)
Do đó:
\(\overrightarrow{BM}+\overrightarrow{NC}=\overrightarrow{PN}+\overrightarrow{NC}=\overrightarrow{PC}\)
b.
Theo tính chất trọng tâm: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{2}{3}\left(\overrightarrow{AG}+\overrightarrow{GM}\right)\)
\(\Rightarrow\dfrac{1}{3}\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{GM}\Rightarrow2\overrightarrow{MG}=-\overrightarrow{AG}=\overrightarrow{GA}\)
\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}+2\overrightarrow{MG}=\overrightarrow{GC}+\overrightarrow{GB}+\overrightarrow{GA}=\overrightarrow{0}\)
Lời giải:
a)
$2\overrightarrow{AD}=\overrightarrow{AD}+\overrightarrow{AD}$
$=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{CD}$
$=\overrightarrow{AB}+\overrightarrow{AC}+(\overrightarrow{BD}+\overrightarrow{CD})$
$=\overrightarrow{AB}+\overrightarrow{AC}$
$\Rightarrow \overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}$
Tương tự:
$\overrightarrow{BE}=\frac{\overrightarrow{BC}+\overrightarrow{BA}}{2}$
$\overrightarrow{CF}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}$
Cộng lại:
$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\frac{\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}}{2}=\overrightarrow{0$}$
Ta có đpcm.
b)
$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DA}+\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{MF}+\overrightarrow{FC}$
$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})+(\overrightarrow{DA}+\overrightarrow{EB}+\overrightarrow{FC})$
$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})-(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF})$
$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}-\overrightarrow{0}$ (theo phần a)
$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}$
Ta có đpcm.
1.
\(\left\{{}\begin{matrix}\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BN}\\\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CP}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\overrightarrow{AB}+\overrightarrow{BC}=2\overrightarrow{BN}\\\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{CB}=2\overrightarrow{CP}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AB}-\overrightarrow{BC}=-2\overrightarrow{BN}\\\overrightarrow{AB}+2\overrightarrow{BC}=-2\overrightarrow{CP}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\overrightarrow{AB}-2\overrightarrow{BC}=-4\overrightarrow{BN}\\\overrightarrow{AB}+2\overrightarrow{BC}=-2\overrightarrow{CP}\end{matrix}\right.\)
\(\Rightarrow3\overrightarrow{AB}=-4\overrightarrow{BN}-2\overrightarrow{CP}\Rightarrow\overrightarrow{AB}=-\frac{4}{3}\overrightarrow{BN}-\frac{2}{3}\overrightarrow{CP}\)
2.
\(\overrightarrow{BI}=\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{DI}\)
\(=-\overrightarrow{AB}+\overrightarrow{AD}+\frac{1}{2}\overrightarrow{DC}\)
\(=-\overrightarrow{AB}+\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AB}\)
\(\Rightarrow\overrightarrow{BI}=-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}\)
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}=\overrightarrow{AB}+\frac{1}{3}\left(\overrightarrow{BI}+\overrightarrow{BC}\right)\)
\(=\overrightarrow{AB}+\frac{1}{3}\left(-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AD}\right)\)
\(=\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}\)
\(\Rightarrow\overrightarrow{AG}=\frac{5}{6}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}\)
Dạ hik như đề sai ạ \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CP}=\overrightarrow{AP}\)
mà P là trung điểm của AB nên \(\overrightarrow{AP}\ne0\)