Cho a,b,c ∈ R : ab + bc + cd =abc và a+b+c=1.CMR (a-1)(b-1)(c-1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
\(VT=\dfrac{a^3bc}{c+ab^2c}+\dfrac{ab^3c}{a+abc^2}+\dfrac{abc^3}{b+a^2bc}\)
\(=abc\left(\dfrac{a^2}{c+ab^2c}+\dfrac{b^2}{a+abc^2}+\dfrac{c^2}{b+a^2bc}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng engel có:
\(VT\ge\dfrac{abc\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}\)\(=\dfrac{abc\left(a+b+c\right)}{1+abc}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy...
Sai đề không bạn,tại a=b=c=2 thay vào không thỏa mãn nha
Ta có: \(a^2,b^2,c^2\le1\Leftrightarrow-1\le a,b,c\le1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge0\left(1\right)\)
Ta lại có: \(\frac{\left(a+b+c+1\right)^2}{2}\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+c^2+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow\frac{1+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow ab+bc+ca+a+b+c+1\ge0\left(2\right)\)
Lấy (1) + (2) vế theo vế ta được
\(abc+2\left(ab+bc+ca+a+b+c+1\right)\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=0\\c=-1\end{cases}}\) và các hoán vị của nó
2(1+a+b+c+ab+bc+ac)
=2(a^2+b^2+c^2+ab+bc+ac)
=(a^2+b^2+c^2+2ab+2bc+2ac)+2(a+b+c) +1
=(a+b+c)^2+2(a+b+c)+1
=(a+b+c+1)^2 >= 0
đúng thì cho 1 tíck nhé
Giải:
Biến đổi vế trái, ta được:
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
\(=\left(ab-a-b+1\right)\left(c-1\right)\)
\(=abc-ab-ac+a-bc+b+c-1\)
\(=abc-ab-ac-bc+a+b+c-1\)
\(=abc-\left(ab+ac+bc\right)+\left(a+b+c\right)-1\)
Thay ab + ac + bc = abc và a + b + c = 1, ta được:
\(=abc-abc+1-1\)
\(=0\)
\(\Rightarrowđpcm\).
Chúc bạn học tốt!