cho hình bình hành abcd tam o. xđ i,j,k thoã
ia+ib+ic=4id
2ja+2jb+=3jc-jd
4ka+3kb+2kc+kd=0
vecto het nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái dạng này mk ms đok qua nên có j sai bỏ qua nha :D
\(\overrightarrow{IA}+3\overrightarrow{IC}=0\Rightarrow\overrightarrow{IJ}+\overrightarrow{JA}+3\left(\overrightarrow{IJ}+\overrightarrow{JC}\right)=0\)
\(\Leftrightarrow4\overrightarrow{IJ}+\overrightarrow{JA}++3\overrightarrow{JC}=0\)
Có \(\overrightarrow{JA}+2\overrightarrow{JB}+3\overrightarrow{JC}=0\)
Trừ vế cho vế
\(\Rightarrow4\overrightarrow{IJ}=2\overrightarrow{BJ}\Leftrightarrow\overrightarrow{BJ}=2\overrightarrow{IJ}\)
=> 3 điểm I,J,B thẳng hàng
Lời giải:
Ta biết một vài tính chất của hình bình hành có tâm $O$:
\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}=0\)
a) Ta có:
\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=4\overrightarrow{ID}\)
\(\Leftrightarrow \overrightarrow{IO}+\overrightarrow{OA}+\overrightarrow{IO}+\overrightarrow{OB}+\overrightarrow{IO}+\overrightarrow{OC}=4\overrightarrow{IO}+4\overrightarrow{OD}\)
\(\Leftrightarrow \overrightarrow{OB}=\overrightarrow{IO}+4\overrightarrow{OD}\Leftrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{IO}+3\overrightarrow{OD}\)
\(\Leftrightarrow{DB}-3\overrightarrow{OD}=\overrightarrow{IO}\)
\(\Leftrightarrow 2\overrightarrow{DO}-3\overrightarrow{OD}=\overrightarrow{IO}\)
\(\Leftrightarrow 5\overrightarrow{DO}=\overrightarrow{IO}\)
Do đó điểm $I$ nằm trên đường thẳng $DO$ sao cho $IO=5DO$
b)
\(2\overrightarrow{FA}+2\overrightarrow{FB}=3\overrightarrow{FC}-\overrightarrow{FD}\)
\(\Leftrightarrow 2\overrightarrow{FO}+2\overrightarrow{OA}+2\overrightarrow{FO}+2\overrightarrow{OB}=3\overrightarrow{FO}+3\overrightarrow{OC}-(\overrightarrow{FO}+\overrightarrow{OD})\)
\(\Leftrightarrow 2\overrightarrow{FO}+2\overrightarrow{OA}-3\overrightarrow{OC}+2\overrightarrow{OB}+\overrightarrow{OD}=0\)
\(\Leftrightarrow 2\overrightarrow{FO}+5\overrightarrow{OA}+\overrightarrow{OB}=0\)
Lấy điểm $I$ thỏa mãn \(5\overrightarrow{IA}+\overrightarrow{IB}=0\)
\(\Rightarrow 2\overrightarrow{FO}+5\overrightarrow{OI}+5\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}=0\)
\(\Leftrightarrow 2\overrightarrow{FO}+6\overrightarrow{OI}=0\Rightarrow \overrightarrow {OF}=3\overrightarrow {OI}\)
Điểm I thỏa mãn nằm trên đoạn $AB$ sao cho $5IA=IB$
Điểm F thỏa mãn nằm trên đường thẳng $OI$ sao cho $OF=3OI$ và I nằm giữa $OF$
c)
\(4\overrightarrow{KA}+3\overrightarrow{KB}+2\overrightarrow{KC}+\overrightarrow{KD}=0\)
\(\Leftrightarrow 4\overrightarrow{KO}+4\overrightarrow{OA}+3\overrightarrow{KO}+3\overrightarrow{OB}+2\overrightarrow{KO}+2\overrightarrow{OC}+\overrightarrow{KO}+\overrightarrow{OD}=0\)
\(\Leftrightarrow 10\overrightarrow{KO}+2\overrightarrow{OA}+\overrightarrow{OB}=0\)
\(\Leftrightarrow 5\overrightarrow{KO}+\overrightarrow{OA}+\overrightarrow{OB}=0\)
Lấy $I$ là trung điểm của AB thì \(\overrightarrow{IA}+\overrightarrow{IB}=0\)
\(\Rightarrow 0=5\overrightarrow{KO}+\overrightarrow{OA}+\overrightarrow{OB}=5\overrightarrow{KO}+\overrightarrow{OI}+\overrightarrow{IA}+\overrightarrow{OI}+\overrightarrow{IB}\)
\(\Leftrightarrow 0=5\overrightarrow{KO}+2\overrightarrow{OI}\Leftrightarrow 5\overrightarrow{OK}=2\overrightarrow{OI}\)
Do đó điểm K nằm trên đoạn thẳng OI sao cho $5OK=2OI$