căn7+căn15 và 7
mọi người so sánh giúp mik với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)
b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
\(A=\dfrac{2^{2008}-3}{2^{2007}-1};B=\dfrac{2^{2007}-3}{2^{2006}-1}\)
\(\dfrac{1}{2}A=\dfrac{2^{2008}-3}{2^{2008}-2}=1-\dfrac{1}{2^{2008}-2};\dfrac{1}{2}B=\dfrac{2^{2007}-3}{2^{2007}-2}=1-\dfrac{1}{2^{2007}-2}\)
2^2008-2>2^2007-2
=>1/2^2008-2<1/2^2007-2
=>A>B
a,Ta có : \(1-\sqrt{3}\); \(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)
Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
b, Đặt A = \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)
\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)
\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)
Vậy (*) = 0
1:
Ta có: \(\sqrt{2}-\sqrt{6}\)
\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)
\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)
\(-3\sqrt{3}=-\sqrt{27}\)
\(-2\sqrt{7}=-\sqrt{28}\)
mà 27<28
nên \(-3\sqrt{3}>-2\sqrt{7}\)
A=x^2+2x+1+y^2-2y+1-9
=(x+1)^2+(y-1)^2-9>=-9
Dấu = xảy ra khi x=-1 và y=1
Ta có: \(\sqrt{7}< \sqrt{9}\); \(\sqrt{15}< \sqrt{16}\)
\(\Rightarrow\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)