\(16x^8-64x^6+84x^4-40x^2+4=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9-64x^2=0
=> 64x^2 = 8
=> \(x^2=\frac{8}{64}=\frac{1}{8}\)
=> \(x=\frac{1}{\sqrt{8}}\)
b ) 25x^2 - 3 = 0
=> 25x^2 = 3
=> \(x^2=\frac{3}{25}\)
=> \(x=\frac{\sqrt{3}}{5}\)
C) 7 - 16x^2 =0
=> 16x^2 = 7
=> \(x^2=\frac{7}{16}\)
=> \(x=\frac{\sqrt{7}}{4}\)
d) 4x^2 - (x-4)^2 = 0
=> 4x^2 - x^2 + 8x - 16 =0
=> 3x^2 + 8x -16 = 0
=> ( 3x^2 + 12x ) - ( 4x +16 ) = 0
=> 3x( x + 4 ) - 4( x + 4 ) = 0
=>( x + 4 )( 3x - 4 ) = 0
=> \(\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}\)
e) ( 3x + 4 )^2 - ( 2x - 5 )^2 = 0
=> ( 3x + 4 + 2x - 5 )( 3x + 4 - 2x + 5 ) = 0
=> ( 5x -1 ) ( x + 9 ) = 0
=> \(\orbr{\begin{cases}5x-1=0\\x+9=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=-9\end{cases}}\)
Trả lời:
a, \(9-64x^2=0\)
\(\Leftrightarrow\left(3-8x\right)\left(3+8x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3-8x=0\\3+8x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{8}\\x=-\frac{3}{8}\end{cases}}}\)
Vậy x = 3/8; x = - 3/8 là nghiệm của pt.
b, \(25x^2-3=0\)
\(\Leftrightarrow\left(5x-\sqrt{3}\right)\left(5x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-\sqrt{3}=0\\5x+\sqrt{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{5}\\x=-\frac{\sqrt{3}}{5}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{3}}{5}\)
c, \(7-16x^2=0\)
\(\Leftrightarrow\left(\sqrt{7}-4x\right)\left(\sqrt{7}+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{7}-4x=0\\\sqrt{7}+4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{7}}{4}\\x=-\frac{\sqrt{7}}{4}\end{cases}}}\)
Vậy \(x=\pm\frac{\sqrt{7}}{4}\)
d, \(4x^2-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(2x-x+4\right)\left(2x+x-4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\3x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{4}{3}\end{cases}}}\)
Vậy x = - 4; x = 4/3 là nghiệm của pt.
e, \(\left(3x+4\right)^2-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(3x+4-2x+5\right)\left(3x+4+2x-5\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-9\\x=\frac{1}{5}\end{cases}}}\)
Vậy x = - 9; x = 1/5 là nghiệm của pt.
\(\Leftrightarrow\frac{\left(x+a\right)\left(3a^2x^2+a^2+8ax+x^2+3\right)\left(3a^6x^6+27a^6x^4+33a^6x2+a^6+72a^5x^5+24a^5x^3+72a^{5x}+27a^4x^6+459a^4x^4+441a^4x^2+33a^4+240a^3x^5+800a^3x^3+240a^3x+33a^2x^6+441a^2x^4+459x^2a^2+27a^2+75ax^5+240ax^3+72ax+x^6+33x^4+27x^2+3\right)}{\left(a^2+3\right)\left(a^6+33a^4+27a^{2+3}\right)\left(x^{2+3}\right)\left(x^6+33x^4+27x^2+3\right)}=0\)
mấy nhân tử sau ko cần chú ý đâu :)) chỉ cần chú ý đến x+a=0 <=>x=-a thôi :))
bài này đúng 100% nhé chỉ sợ gõ sai thôi, ko tin có thể dùng máy tính kiểm tra
1. x3 + 8 = (x + 2 )(x2 - x + 1)
2. 27 - 8y3 = ( 3 - 2y ) ( 9 + 6y + 4y2 )
3. y6 + 1 = (y2)3 + 1 = ( y2 + 1) ( y4 - y2 +1 )
4.64x3 - \(\dfrac{1}{8}\)y3 = ( 4x - \(\dfrac{1}{2}\)y ) ( 16x2 + 2xy + \(\dfrac{1}{4}\)y2)
5. 125x6 - 27y9 = (5x2)3 - (3y3)3
= ( 5x2 - 3y3)(25x4 +15x2y3 + 9y6)
16x^4 - 40x^2y^3 + 25y^6
= ( 4x^2 - 5y^3 )^2 > hoặc = 0 với mọi giá trị của biến
Vậy ( 4x^2 - 5y^3 )^2 không âm
\(x^6-6x^4-64x^3+12x^2-8=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left(x^4+4x^3+12x^2-8x+4\right)=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left[\left(x^4+4x^3+4x^2\right)+\left(8x^2-8x+\frac{8}{4}\right)+2\right]=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left[\left(x^2+2x\right)^2+8\left(x-\frac{1}{2}\right)^2+2\right]=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow x=2\pm\sqrt{6}\)
a) \(\sqrt{x^2}=7\)
\(\Leftrightarrow\left|x\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
b) \(\sqrt{\left(x-2020\right)^2}=10\)
\(\Leftrightarrow\left|x-2020\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)
c) đk: \(x\ge2\)
\(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)
\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)
\(\Leftrightarrow12\sqrt{x-2}=x+4\)
\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow x^2-136x+304=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)
d) đk: \(x\ge-1\)
\(\sqrt{25x+25}-2\sqrt{64x+64}=7\)
\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)
\(\Leftrightarrow-11\sqrt{x+1}=7\)
Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)
=> pt vô nghiệm