K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-6}=\dfrac{y}{4}=\dfrac{x+y}{-6+4}=\dfrac{-8}{-2}=4\)

Do đó: x=-24; y=16

14 tháng 11 2018

\(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=2x\left(\dfrac{1}{x^2-y^2}+\dfrac{1}{x^2+y^2}\right)+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=4x^3\left(\dfrac{1}{x^4-y^4}+\dfrac{1}{x^4+y^4}\right)+\dfrac{8x^7}{x^8+y^8}=8x^7\left(\dfrac{1}{x^8-x^8}+\dfrac{1}{x^8+y^8}\right)=\dfrac{16x^{15}}{x^{16}-y^{16}}\)

NV
14 tháng 11 2018

\(=\dfrac{x+y+x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{2x}{x^2-y^2}+\dfrac{2x}{x^2+y^2}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=2x\left(\dfrac{1}{x^2-y^2}+\dfrac{1}{x^2+y^2}\right)+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{4x^3}{x^4-y^4}+\dfrac{4x^3}{x^4+y^4}+\dfrac{8x^7}{x^8+y^8}=4x^3\left(\dfrac{1}{x^4-y^4}+\dfrac{1}{x^4+y^4}\right)+\dfrac{8x^7}{x^8+y^8}\)

\(=\dfrac{8x^7}{x^8-y^8}+\dfrac{8x^7}{x^8+y^8}=8x^7\left(\dfrac{1}{x^8-y^8}+\dfrac{1}{x^8+y^8}\right)\)

\(=\dfrac{16x^{15}}{x^{16}-y^{16}}\)

9 tháng 10 2021

6. \(\left\{{}\begin{matrix}2y-4=0\\3x+y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=-2\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}4x-6y=2\\x-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\\dfrac{2+6y}{4}-\dfrac{3}{2}y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2+6y}{4}\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-2\end{matrix}\right.\)

8. \(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{2}=1\\2x+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\left(1-\dfrac{y}{2}\right).3\\6\left(1-\dfrac{y}{2}\right)+3y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(1-\dfrac{y}{2}\right)\\y=\left(VNghiệm\right)\end{matrix}\right.\Leftrightarrow\) không tồn tại x, y

(Các câu khác tương tự nhé.)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

a)      Ta có \(\dfrac{x}{4} = \dfrac{y}{7}\) và x + y = 55

Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{4} = \dfrac{y}{7} = \dfrac{{x + y}}{{4 + 7}} = \dfrac{{55}}{{11}} = 5\)

\( \Rightarrow \dfrac{x}{4} = 5 \Rightarrow x = 20\)

\( \dfrac{y}{7} = 5 \Rightarrow y = 35\)

Vậy x = 20; y = 35

b)      \(\dfrac{x}{8} = \dfrac{y}{3}\) và x – y = 35

Áp dụng tính chất tỉ lệ thức ta có : \(\dfrac{x}{8} = \dfrac{y}{3} = \dfrac{{x - y}}{{8 - 3}} = \dfrac{{35}}{5} = 7\)

\( \Rightarrow \dfrac{x}{8} = 7\) \( \Rightarrow \) x = 56

Mà x – y = 35 \( \Rightarrow \) y = 56 – 35 = 21

Vậy x = 56 ; y = 21

31 tháng 12 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\dfrac{x}{6}\)=\(\dfrac{y}{10}\)=\(\dfrac{x+y}{6+10}\)=\(\dfrac{8}{16}\)=\(\dfrac{1}{2}\)Do đó :\(\dfrac{x}{6}\)=\(\dfrac{1}{2}\)=> x = 3\(^{\dfrac{y}{10}}\)=\(\dfrac{1}{2}\)=>y=5Vậy x=3 ; y=5

2: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{4x+y-z}{4\cdot3+12-16}=\dfrac{8}{8}=1\)

Do đó: x=3; y=12; z=16

7 tháng 12 2021

undefined

NV
22 tháng 7 2021

Xét trên các miền xác định của các hàm (bạn tự tìm miền xác định)

a.

\(y'=\dfrac{1}{2\sqrt{x-3}}-\dfrac{1}{2\sqrt{6-x}}=\dfrac{\sqrt{6-x}-\sqrt{x-3}}{2\sqrt{\left(x-3\right)\left(6-x\right)}}\)

\(y'=0\Rightarrow6-x=x-3\Rightarrow x=\dfrac{9}{2}\)

\(x=\dfrac{9}{2}\) là điểm cực đại của hàm số

b.

\(y'=1-\dfrac{9}{\left(x-2\right)^2}=0\Rightarrow\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

\(x=-1\) là điểm cực đại, \(x=5\) là điểm cực tiểu

c.

\(y'=\sqrt{3-x}-\dfrac{x}{2\sqrt{3-x}}=0\Rightarrow2\left(3-x\right)-x=0\)

\(\Rightarrow x=2\) 

\(x=2\) là điểm cực đại

NV
22 tháng 7 2021

d.

\(y'=\dfrac{-x^2+4}{\left(x^2+4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

\(x=-2\) là điểm cực tiểu, \(x=2\) là điểm cực đại

e.

\(y'=\dfrac{-8\left(x^2-5x+4\right)}{\left(x^2-4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

\(x=1\) là điểm cực tiểu, \(x=4\) là điểm cực đại

5 tháng 11 2021

\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{11}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=8k\\y=6k\\z=11k\end{matrix}\right.\)\(\Rightarrow xyz=528k^3=-528\Rightarrow k=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=8.\left(-1\right)=-8\\y=6.\left(-1\right)=-6\\z=11.\left(-1\right)=-11\end{matrix}\right.\)

19 tháng 11 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{6}=\dfrac{x-y}{5-3}=\dfrac{4}{2}=2\)

\(\dfrac{x}{5}=2\Rightarrow x=10\\ \dfrac{y}{3}=2\Rightarrow y=6\\ \dfrac{z}{6}=2\Rightarrow z=12\)

19 tháng 11 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{6}=\dfrac{x-y}{5-3}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=12\end{matrix}\right.\)