Đường trung bình của tam giác và hình thang là như thế nào ??
~ Nvm ~~~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Định lý 1
Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.
Cho hình thang ABCD. E là trung điểm cạnh AD. Qua A kẻ đường thẳng song song với hai đáy, cắt cạnh BC tại F. Chứng minh F là trung điểm BC.
Chứng minh định lý: gọi H là giao điểm của AC và EF. Theo định lý 1 về đường trung bình trong tam giác, vì EH đi qua trung điểm AD và song song với DC nên H là trung điểm cạnh AC. Xét tương tự trong tam giác CAB, vì HF đi qua trung điểm AC và song song với AB nên F là trung điểm BC. Định lý được chứng minh.
P/s: Tôi viết định lý 1 thôi, định lý 2 thì xem ở đây: Đường trung bình – Wikipedia tiếng Việt
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)
mà E\(\in\)BC và \(BE=\dfrac{BC}{2}\)
nên MN//BE và MN=BE
Xét tứ giác BMNE có
MN//BE
MN=BE
Do đó: BMNE là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến ứng với cạnh huyền AB
nên HM=AM=MB
Ta có: ΔAHC vuông tại H
mà HN là đường trung tuyến ứng với cạnh huyền AC
nên HN=AN=NC
Ta có: HM=AM
nên M nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: HN=AN
nên N nằm trên đường trung trực của AH\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra MN là đường trung trực của AH
b: Xét ΔBAC có
M là trung điểm của AB
E là trung điểm của BC
Do đó: ME là đường trung trực của ΔBAC
Suy ra: ME//AC và \(ME=\dfrac{AC}{2}\)
mà \(AN=\dfrac{AC}{2}\)
nên ME=AN
mà AN=HN
nên HN=ME
Xét tứ giác HMNE có
MN//HE
nên HMNE là hình thang
Hình thang HMNE có HN=ME
nên HMNE là hình thang cân
- Đường trung bình của tam giác:
+ Định lí 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
+ Định lí 2: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
- Đường trung bình của hình thang:
+ Định lí 3: Đường thẳng đi qua trung điểm của một cạnh bên của hình thang và song song với hai đáy thì đi qua trung điểm cạnh bên thứ hai.
+ Định lí 4: Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.
• Đường trung bình của tam giác song song với cạnh thứ 3 và bằng nửa cạnh ấy.
• Đường trung bình của hình thang song song với 2 đáy và bằng nửa tổng 2 đáy.
Đường trung bình của tam giác là đoạn thẳng nốitrung điểm hai cạnh của tam giác; trong một tam giáccó ba đường trung bình. Đường trung bình của tam giác thì song song với cạnh thứ ba và có độ dài bằng một nửa độ dài cạnh thứ ba.
Đường trung bình của hình thang là đoạn thẳng nốitrung điểm hai cạnh bên của hình thang. Đường trung bình của hình thang thì song song với hai đáy của hình thang và có độ dài bằng một nửa tổng độ dài hai đáy.
- Đường trung bình của tam giác thì song song với cạnh thứ ba và có độ dài bằng một nửa độ dài cạnh thứ ba.
- (+) Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang.
(+) Đường trung bình của hình thang thì song song với hai đáy của hình thang và có độ dài bằng một nửa tổng độ dài hai đáy.