tìm x biết
(4x^2-25)^2-9(2x-5)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2=0\)
\(\left[\left(2x-5\right)\left(2x+5\right)\right]^2-9\left(2x-5\right)^2=0\)
\(\left(2x-5\right)^2\left[\left(2x+5\right)^2-9\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-5\right)^2=0\\\left(2x+5\right)-9=0\end{cases}}\)
+) \(\left(2x-5\right)^2=0\)
\(\Rightarrow2x-5=0\)
\(\Leftrightarrow x=\frac{5}{2}\)
+) \(\left(2x+5\right)^2-9=0\)
\(\Leftrightarrow\left(2x+5-3\right)\left(2x+5+3\right)=0\)
\(\Leftrightarrow\left(2x+2\right)\left(2x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+2=0\\2x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy ....
1) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right).-2=0\)
\(\Leftrightarrow-4x+10=0\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\frac{5}{2}.\)
Vậy \(S=\left\{\frac{5}{2}\right\}\)
2)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right).\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\)hoặc \(x=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=-3\)hoặc \(x=0\)hoặc \(x=2\)
Vậy \(S=\left\{-3;0;2\right\}\)
\(\Rightarrow\left[\left(2x+5\right)\left(2x-5\right)\right]^2-9\left(2x-5\right)^2=0\)
\(\Rightarrow\left(2x-5\right)^2\left[\left(2x+5\right)^2-3^2\right]=0\)
\(\Rightarrow\left(2x-5\right)^2\left(2x+5-3\right)\left(2x+5+3\right)=0\)
\(\Rightarrow\left(2x-5\right)^2=0\Rightarrow2x-5=0\Rightarrow2x=5\Rightarrow x=\frac{5}{2}\)
hoặc \(2x+2=0\Rightarrow2x=-2\Rightarrow x=-1\)
hoặc \(2x+8=0\Rightarrow2x=-8\Rightarrow x=-4\)
vậy x = 5/2 ; x = -1 ; x = -4
a) \(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2=9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)
b) \(3x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow\left(3x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)
c) \(4x\left(x+3\right)-x^2+9=0\)
\(\Leftrightarrow4x\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(3x+3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\)
d) \(\left(2x+5\right)\left(x-4\right)=\left(x-4\right)\left(5-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
e) \(16x^2-25=\left(4x-5\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)-\left(4x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=-2\end{cases}}\)
f) \(\left(x+\frac{1}{5}\right)^2=\frac{64}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{8}{3}\\x+\frac{1}{5}=-\frac{8}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{37}{15}\\x=-\frac{43}{15}\end{cases}}\)
g) \(9\left(x+2\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}3x+6=x+3\\3x+6=-x-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=-9\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x=-\frac{9}{4}\end{cases}}\)
a) 4x3 - 9x = 0
<=> x( 4x2 - 9 ) = 0
<=> x( 2x - 3 )( 2x + 3 ) = 0
<=> x = 0 hoặc 2x - 3 = 0 hoặc 2x + 3 = 0
<=> x = 0 hoặc x = ±3/2
b) 3x( x - 2 ) - 5x + 10 = 0
<=> 3x( x - 2 ) - 5( x - 2 ) = 0
<=> ( x - 2 )( 3x - 5 ) = 0
<=> x - 2 = 0 hoặc 3x - 5 = 0
<=> x = 2 hoặc x = 5/3
c) 4x( x + 3 ) - x2 + 9 = 0
<=> 4x( x + 3 ) - ( x2 - 9 ) = 0
<=> 4x( x + 3 ) - ( x - 3 )( x + 3 ) = 0
<=> ( x + 3 )[ 4x - ( x - 3 ) ] = 0
<=> ( x + 3 )( 4x - x + 3 ) = 0
<=> ( x + 3 )( 3x + 3 ) = 0
<=> x + 3 = 0 hoặc 3x + 3 = 0
<=> x = -3 hoặc x= -1
d) ( 2x + 5 )( x - 4 ) = ( x - 4 )( 5 - x )
<=> ( 2x + 5 )( x - 4 ) - ( x - 4 )( 5 - x ) = 0
<=> ( x - 4 )[ ( 2x + 5 ) - ( 5 - x ) ] = 0
<=> ( x - 4 )( 2x + 5 - 5 + x ) = 0
<=> ( x - 4 ).3x = 0
<=> x - 4 = 0 hoặc 3x = 0
<=> x = 4 hoặc x = 0
e) 16x2 - 25 = ( 4x - 5 )( 2x + 1 )
<=> ( 4x - 5 )( 4x + 5 ) - ( 4x - 5 )( 2x + 1 ) = 0
<=> ( 4x - 5 )[ ( 4x + 5 ) - ( 2x + 1 ) ] = 0
<=> ( 4x - 5 )( 4x + 5 - 2x - 1 ) = 0
<=> ( 4x - 5 )( 2x + 4 ) = 0
<=> 4x - 5 = 0 hoặc 2x + 4 = 0
<=> x = 5/4 hoặc x = -2
f) ( x + 1/5 )2 = 64/9
<=> ( x + 1/5 )2 = ( ±8/3 )2
<=> x + 1/5 = 8/3 hoặc x + 1/5 = -8/3
<=> x = 37/15 hoặc x = -43/15
g) 9( x + 2 )2 = ( x + 3 )2
<=> 32( x + 2 )2 - ( x + 3 )2 = 0
<=> [ 3( x + 2 ) ]2 - ( x + 3 )2 = 0
<=> ( 3x + 6 )2 - ( x + 3 )2 = 0
<=> [ ( 3x + 6 ) - ( x + 3 ) ][ ( 3x + 6 ) + ( x + 3 ) ] = 0
<=> ( 3x + 6 - x - 3 )( 3x + 6 + x + 3 ) = 0
<=> ( 2x + 3 )( 4x + 9 ) = 0
<=> 2x + 3 = 0 hoặc 4x + 9 = 0
<=> x = -3/2 hoặc x = -9/4
ĐKXĐ:\(2x-5\ne0\Rightarrow x\ne\dfrac{5}{2}\)
\(\dfrac{4x^2-25}{2x-5}=0\\ \Leftrightarrow\dfrac{\left(2x-5\right)\left(2x+5\right)}{2x-5}=0\\ \Leftrightarrow2x+5=0\\ \Leftrightarrow x=-\dfrac{5}{2}\left(tm\right)\)
a) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)