Tìm x thuộc Q biết
a) (x+1).(x-2)< 0
b) (x-2).(x + 1phần 2)> 0
Ai làm nhanh nhất mình k cho ^ - ^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
a
\(x+x^2-x^3-x^4=0\\ \Leftrightarrow x\left(1+x\right)-x^3\left(1+x\right)=0\\ \Leftrightarrow\left(1+x\right)\left(x-x^3\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x^2\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x\right)\left(1+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
b
x^3 chứ: )
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
a) \(\Rightarrow\left(x-1\right)\left(3x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\Rightarrow\left(x-1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(b,\Rightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Rightarrow5\left(x+2\right)=0\\ \Rightarrow x=-2\\ c,\Rightarrow2x\left(x^2-2x+1\right)=0\\ \Rightarrow2x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ d,\Rightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Rightarrow3x\left(-x-2\right)=0\\ \Rightarrow-3x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\)hoặc \(\hept{\begin{cases}x< -1\\x>2\end{cases}\left(Loai\right)}\)
\(\Leftrightarrow-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{1}{2}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\x+\frac{1}{2}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{1}{2}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< \frac{-1}{2}\end{cases}}\)
\(\Leftrightarrow x>2\)hoặc \(x< \frac{-1}{2}\)
Vậy \(\orbr{\begin{cases}x>2\\x< \frac{-1}{2}\end{cases}}\)
a, \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\text{ }\left(x+1\right)\text{ và }\left(x-2\right)\text{ trái dấu}\)
Mà \(x+1>x-2\)
\(\Rightarrow\text{ }\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\) \(\Rightarrow\text{ }\hept{\begin{cases}x>-1\\x< 2\end{cases}}\) \(\Rightarrow\text{ }-1< x< 2\)
\(\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
b, \(\left(x-2\right)\left(x+\frac{1}{2}\right)>0\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x+\frac{1}{2}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{1}{2}< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x>2\\x>-\frac{1}{2}\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{1}{2}\end{cases}}\)
\(x>2\) hoặc \(x< -\frac{1}{2}\)