LÀM ƠN CÓ AI ĐẠI PHÁT TỪ BI LÀM GIÚP CÁI Ạ
Bài 4 :(6,0 điểm): Cho hình chữ nhật ABCD.Trên đường chéo BD lấy điểm P sao
cho P là trọng tâm
ADC
. Gọi M là điểm đối xứng của điểm C qua P.
a) So sánh MD và AP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình :
a ) Gọi O là giao điểm hai đường chéo của hình chữ nhật ABCD . Dễ thấy : AM // DO
\(\Rightarrow\)Tứ giác AMDB là hình thang
b ) Do AM // BD nên \(\widehat{OBA}=\widehat{MAE}\)( hai góc đồng vị ) . Tam giác AOB cân ở O nên \(\widehat{OBA}=\widehat{OAB}\). Gọi I là giao điểm hai đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên \(\widehat{IAE}=\widehat{IEA}\)
Từ các chứng mình trên suy ra \(\widehat{FEA}=\widehat{OAB}\)do đó EF // AC ( 1 )
Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC ( 2 )
.Từ ( 1 ) và ( 2 ) suy ra ba điểm E ; F ; P thẳng hàng
c ) \(\Delta MAF~\Delta DBA\left(g-g\right)\Rightarrow\frac{MF}{FA}=\frac{AD}{AB}\)( không đổi )
d ) Nếu \(\frac{PD}{PB}=\frac{9}{16}\)thì \(\frac{PD}{9}=\frac{PB}{16}=k\Rightarrow PD=9k;PB=16k\)
Nếu \(CP\perp BD\)thì \(\Delta CPB~\Delta DCP\left(g-g\right)\Rightarrow\frac{CP}{PD}=\frac{PB}{CP}\)do đó \(CP^2=PB.PD\)Từ đó ta có :
\(\left(2,4\right)^2=9.16k^2\Rightarrow k=0,2;PD=9k=1,8\left(cm\right);PB=16k=3,2\left(cm\right);BD=5\left(cm\right)\)
Bạn đọc dễ dàng chứng minh được \(BC^2=BP.BD=16\). Do đó : \(BC=4\left(cm\right);CD=3\left(cm\right)\)
a) Chọn điểm O là giao điểm của 2 đường chéo của hình chữ nhật ABCD
⇒ PO là đường trung bình của △ CAM
⇒ PO // AM ⇒ BD//AM
⇒ Tứ giác AMDB là hình thang
b) Từ a ta có: có AM // BD
⇒ \(\widehat{A_1}=\widehat{B_1}\) ( đồng vị )
Mà △ OAB cân tại O ( vì ABCD là hình chữ nhật )
⇒ \(\widehat{A_2}=\widehat{B_1}\)
⇒ \(\widehat{A_1}=\widehat{A_2}\) \(\left(1\right)\)
Gọi I là giao điểm của 2 đường chéo của hình chữ nhật AEMF
⇒ △ IEA cân tại I
⇒ \(\widehat{E_1}=\widehat{A_1}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ⇒ \(\widehat{E_1}=\widehat{A_1}\) ( ở vị trí đồng vị )
⇒ EF // AC \(\left(3\right)\)
Mặt khác IP là đường trung bình của △ MAC ( do I,P là trung điểm của AM và BD )
⇒ IP // AC \(\left(4\right)\)
Từ \(\left(3\right)\) và \(\left(4\right)\) ⇒ EF // IP ⇒ Ba điểm E, F, P thẳng hàng
c) Xét△ MAF và △ DBA có:
\(\widehat{MFA}=\widehat{DAB}\) \(=90^o\)
\(\widehat{A_1}=\widehat{B_1}\) ( cmt ) ; \(\widehat{A_1}=\widehat{M_1}\) ( so le trong )
⇒ \(\widehat{B_1}=\widehat{M_1}\)
⇒△ MAF ∼ △ DBA ( g - g )
⇒ \(\dfrac{MF}{DA}=\dfrac{AF}{BA}\) ⇒ \(\dfrac{MF}{AF}=\dfrac{DA}{BA}\) ( không đổi )
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Gọi O là giao của AC và BD; I là giao của CM với AD
Xét tg ADC có
OA=OC (Trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> DO là trung tuyến của tg ADC; P là trọng tâm của tg ADC => P thuộc DO
=> CI là trung tuyến của tg ADC => IA=ID (1) và PC=2PI
Ta có PC=PM => PM=2PI => PI=MI (2)
Từ (1) và (2) => AMDP là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> MD=AP (trong hbh các cặp cạnh đối bằng nhau từng đôi một)