K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

Ta có:

\(a^2+b^2+c^2=a^3+b^3+c^3\)

\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)

Mà 

\(a^2+b^2+c^2=1\Rightarrow\left|a\right|\le1;\left|b\right|\le1;\left|c\right|\le1\Rightarrow1-a\ge0;1-b\ge0;1-c\ge0\)

\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)

Dấu "=" xảy ra khi và chỉ khi:\(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0\)

Khi đó ta tìm được \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị.

Thay vào ta tìm được \(C=1\)

P/S:Mik nghĩ đề là \(a^2+b^9+c^{1945}\) thì sẽ hợp lý hơn:3

11 tháng 10 2016

Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)

\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)

Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)

Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)

Vậy C = 1

Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1

11 tháng 10 2016

Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)

\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)

29 tháng 8 2016

Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
                                        \(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .

29 tháng 8 2016

THEO MÌNH a = 1    b = 0    c = 0 hoặc là a = 0     b = 1    c = 0

\(\Rightarrow\)S = 1      mình đã rất mỏi tay nên ko diễn giải dc  

FC : ĐÃ RẤT CỐ GẮNG

27 tháng 8 2016

a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1

\(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)

⇒a\(^3\)+ b\(^3\)+ c\(^3\)\(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1

Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)

Vậy S = 0 + 0 + 1 = 1

27 tháng 8 2016

giup minh nha cac ban