I4x-3I-Ix+7I=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-5=3-8x\\2x-5=8x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10x=8\\-6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Ta có:
\(B=[x-3]+[x-7]-15\)
\(\Leftrightarrow B=x-3+x-7-15\)
Vì:
\(B=x-3+x-7\ge0\)
Nên:
\(x-3+x-7-15\ge-15\)
\(\Rightarrow x-3+x-7=-15\)
\(\Rightarrow x=-\frac{5}{2}\)
a, | x + y - 8 | + | x - y - 18 | = 0
Suy ra : | x + y - 8 | = 0 hoặc | x - y - 18 | = 0
Nếu | x + y - 8 | = 0 Nếu | x - y - 18 | = 0
=> x + y - 8 = 0 => x - y - 18 = 0
x + y = 8 ( 1 ) x - y = 18 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : x = 13 và y = -5
b, | x + y - 7 | + | xy - 10 | \(\le\)0
Vì | x + y - 7 | \(\ge\)0; | xy - 10 | \(\ge\)0 nên | x + y - 7 | + | xy - 10 | \(\le\)0
Suy ra : | x + y - 7 | + | xy - 10 | \(\le\)0 <=> x + y - 7 | = 0 và | xy - 10 | = 0
| x + y - 7 | = 0 | xy - 10 | = 0
=> x + y - 7 = 0 => xy - 10 = 0
x + y = 7 ( 1) xy = 10 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : x = 5 và y = 2
c, | x - y - 5 | + 2017. | y - 3 | = 0
Vì | x - y - 5 | \(\ge\)0 ; 2017. | y - 3 | \(\ge\)0 nên | x - y - 5 | + 2017. | y - 3 | = 0
Mà | x - y - 5 | + 2017. | y - 3 | = 0 <=> | x - y - 5 | = 0 ; | y - 3 | = 0
| x - y - 5 | = 0 | y - 3 | = 0
=> x - y - 5 = 0 => y - 3 = 0
x - y = 5 ( 1 ) y = 3 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : x = 8 và y = 3
a) Do \(\left|x+y-8\right|\ge0;\left|x-y-18\right|\ge0\forall x,y\)
nên \(\left|x+y-8\right|+\left|x-y-18\right|=0\Leftrightarrow\hept{\begin{cases}\left|x+y-8\right|=0\\\left|x-y-18\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=8\\x-y=18\end{cases}}\Leftrightarrow\hept{\begin{cases}x=13\\y=-5\end{cases}}\)
b) Do \(\left|x+y-7\right|\ge0;\left|xy-10\right|\ge0\forall x,y\)
nên \(\left|x+y-7\right|+\left|xy-10\right|\le0\Leftrightarrow\hept{\begin{cases}\left|x+y-7\right|=0\\\left|xy-10\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=7\\xy=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=5\\x=5;y=2\end{cases}}\)
c) Do \(\left|x-y-5\right|\ge0;\left|y-3\right|\ge0\forall x,y\)
nên \(\left|x-y-5\right|+2017.\left|y-3\right|=0\Leftrightarrow\hept{\begin{cases}\left|x-y-5\right|=0\\\left|y-3\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y=5\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)
\(\left|5x-4\right|=\left|x+2\right|\)
\(\Rightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4+x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5x-x=2+4\\6x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
b tương tự
\(\left|5x-4\right|=\left|x+2\right|\)
\(\Rightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-\left(x+2\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5x-x=4+2\\5x-4=-x-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=6\\5x+x=4-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{4}\\6x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{2}{6}=\frac{1}{3}\end{cases}}\)
\(\text{b) }\left|2+3x\right|=\left|4x-3\right|\)
\(\Rightarrow\orbr{\begin{cases}2+3x=4x-3\\2+3x=-\left(4x-3\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-4x+3x=-2-3\\2+3x=-4x+3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-1x=-5\\4x+3x=-2+3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\7x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{7}\end{cases}}\)
=>|x-3|=5+7=12
=>x-3=12 hoặc x-3=-12
=>x=15 hoặc x=-9
vậy x E {-9;15}
tick nhé
Ta có : |5 - 7x| = \(\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}5-7x=\frac{1}{4}\\5-7x=-\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}7x=5-\frac{1}{4}\\7x=5+\frac{1}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}7x=\frac{19}{4}\\7x=\frac{21}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{19}{28}\\x=\frac{3}{4}\end{cases}}\)
A = 3Ix - 1I - 2I5 - 3xI
x | 1 | \(\frac{5}{3}\) | |||
x - 1 | - | 0 | + | + | + |
5 - 3x | - | - | - | 0 | - |
TH1: x < 1
A = 3(1 - x) -2(3x - 5)
= 3 - 3x - 6x + 10
= 13 - 9x
TH2: 1 \(\le\) x <\(\frac{5}{3}\)
A = 3(x - 1) - 2(3x - 5)
= 3x - 3 - 6x + 10
= -3x + 7
TH3:\(\frac{5}{3}\)\(\le\)x
A = 3(x - 1) - 2(5 - 3x)
= 3x - 3 - 10 + 6x
= 9x - 13
B = 4Ix - 3I + 2I2x - 1I + 4 -3xI
Câu này mình không làm do có một dấu giá trị tuyệt đối cuối còn một cái nữa ở đâu thì tôi không biết
a) I5 - 7xI = 1/4
<=> 5 - 7x = 1/4 hay 5 - 7x = -1/4
<=> 7x = 19/4 I <=> 7x = 21/4
<=> x = 19/28 I <=> x = 3/4
b) I4x - 11I = 1/2x - 1
<=> 4x - 11 = 1/2x - 1 hay 4x - 11 = 1 - 1/2x
<=> 4x - 1/2x = -1 + 11 I <=> 4x + 1/2x = 1 + 11
<=> 7/2x = 10 I <=> 9/2x = 12
<=> x = 20/7 I <=> x = 8/3
c) Ix - 5I + Ix - 8I = 4 - 3x (*)
x | 5 | 8 | |||
x - 5 | - | 0 | + | + | + |
x - 8 | - | - | - | 0 | + |
TH1: x < 5
(*) <=> 5 - x + 8 - x = 4 - 3x
<=> x = -9
TH2: 5\(\le\)x < 8
(*) <=> x - 5 + 8 - x = 4 - 3x
<=> 3x = 1
<=> x =\(\frac{1}{3}\)
TH3: 8\(\le\)x
(*) <=> x - 5 + x - 8 = 4 - 3x
<=> 5x = 17
<=> x =\(\frac{17}{5}\)
\(|4x-3|-|x+7|=0\)
\(\Leftrightarrow|4x-3|=|x+7|\)
\(\Leftrightarrow\orbr{\begin{cases}4x-3=x+7\\4x-3=-x-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=10\\5x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=\frac{-4}{5}\end{cases}}\)
Vậy \(x\in\left\{\frac{10}{3};\frac{-4}{5}\right\}\)
\(\left|4x-3\right|-\left|x+7\right|=0\)
\(\Leftrightarrow\left|4x-3\right|=\left|x+7\right|\)(1)
* Nếu \(x\ge-7\)thì \(x+7\ge0\Rightarrow\left|x+7\right|=x+7\)
\(\Rightarrow\left(1\right)\Leftrightarrow x+7=\left|4x-3\right|\)(2)
+) Nếu \(x\ge\frac{4}{3}\)thì \(\left(2\right)\Leftrightarrow x+7=4x-3\Leftrightarrow x=\frac{10}{3}\left(TM\right)\)
+) Nếu \(x< \frac{4}{3}\)thì \(\left(2\right)\Leftrightarrow x+7=3-4x\Leftrightarrow x=\frac{-4}{5}\left(TM\right)\)
* Nếu \(x< -7\)thì \(x+7< 0\Rightarrow\left|x+7\right|=-x-7\)
\(\Rightarrow\left(1\right)\Leftrightarrow-x-7=\left|4x-3\right|\)(3)
+) Nếu \(x\ge\frac{4}{3}\)thì \(\left(3\right)\Leftrightarrow-x-7=4x-3\Leftrightarrow x=\frac{-4}{5}\left(TM\right)\)
+) Nếu \(x< \frac{4}{3}\)thì \(\left(3\right)\Leftrightarrow-x-7=3-4x\Leftrightarrow x=\frac{3}{10}\left(TM\right)\)
Vậy \(x\in\left\{\frac{-4}{5};\frac{3}{10}\right\}\)