Tìm phân số có tử là 9 mà phân số đó lớn hơn 11/-13 và nhỏ hơn 11/-15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt phân số có tử là 9: \(\frac{9}{a}\)( a \(\in\)z với a \(\ne\)0)
Theo đề bài ra:
\(\frac{-11}{13}< \frac{9}{a}< \frac{-11}{15}\)\(\Rightarrow\frac{-99}{117}< \frac{-99}{-11a}< \frac{-99}{135}\)
\(\Rightarrow\)117 < -11a < 135 \(\Rightarrow\) -11a \(\in\){ 118; 119; 120; ...; 133; 134;135}
Mà a \(\in\)Z \(\Rightarrow\)-11a \(⋮\)11 \(\Rightarrow\) -11a \(\in\) { 121; 132} \(\Rightarrow\) a \(\in\) { -11; -12}
Thay a vào phân số \(\frac{9}{a}\), ta có: \(\frac{9}{a}\in\left\{\frac{9}{-11};\frac{9}{-12}\right\}\) hay \(\frac{9}{a}\in\left\{\frac{-9}{11};\frac{-9}{12}\right\}\)
^^ Học tốt!
Gọi phân số cần tìm là \(\frac{9}{a}\left(a\ne0\right)\)
Theo đề bài ta có:\(-\frac{11}{13}< \frac{9}{a}< -\frac{11}{15}\)
\(\Leftrightarrow-\frac{99}{117}< -\frac{99}{11a}< -\frac{99}{135}\)
Tương đương với:
\(\Leftrightarrow\frac{99}{135}< \frac{99}{11a}< \frac{99}{117}\)
Do đó ta có PT cần lập:\(117< 11a< 135\)
Ta có:\(B\left(11\right):\left[0;11;22;33;.....;99;110;121;132;143;..\right]\)
Nhưng trong khoảng này số TM là:132
Vậy a là 12
Gọi phân số cần tìm là \(\frac{9}{x}\)
Ta có: \(\frac{-11}{13}< \frac{9}{x}< \frac{-11}{15}\)
Quy đồng tử, số ta có: \(\frac{-99}{177}< \frac{-99}{-11x}< \frac{-99}{135}\)
\(=>177>-11x>135\), vì x thuộc Z nên x thuộc \(\left\{-16;-15;-14;-13;-12\right\}\)
Gọi phân số cần tìm là \(\frac{9}{x}\)(x\(\varepsilon\)\(ℤ\);x\(\ne\)0)
Ta có \(\frac{11}{-13}\)<\(\frac{9}{x}\)<\(\frac{11}{-15}\)\(\Rightarrow\)\(\frac{99}{-117}\)<\(\frac{99}{11x}\)<\(\frac{99}{-135}\)\(\Rightarrow\)-117>11x>-135
Vì x\(\varepsilon\)\(ℤ\)nên 11x\(⋮\)11\(\Rightarrow\)11x\(\varepsilon\){-121;-132}\(\Rightarrow\)x\(\varepsilon\){-11;-12}
Vậy x\(\varepsilon\){-11;-12}