Chứng minh: 5n+3 - 3*5n+1 + 26n+3 chia hết cho 59
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31
35n+2+35n+1-35n
=35n.32+35n.31-35n
=35n.9+35n.3-35n
=35n.(9+3-1)
=35n.11 chia hết cho 11
=> 35n+2+35n+1-35n chia hết cho 11
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
5n+5n.52=650
5n(1+52)=650
5n.26=650
=>5n=650:26
=>5n=25=52
=>n=2
a, n^3 +5n
= n^3 -n+ 6n
= n(n^2-1)+ 6n
=n(n-1)(n+1) +6n
Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6
Mặt khác, 6n chia hết cho 6.
Suy ra: n(n-1)(n+1) +6n chia hết cho 6
Vậy n^3 + 5n chia hết cho 6
b, n^3 *19n ko chia hết cho 6 được.Bạn nên xem lại đề bài xem có đúng ko.
c, 5n^3 + 15n^2 +10n
= 5n(n^2 +3n+2)
= 5n(n+1)(n+2)
n(n+1)(n+2) chia hết cho 6 nên 5n^3 +15n^2 +10n chia hết cho 6
Chúc bạn học tốt.
Die Devil: kiểm tra kĩ đề bài trước khi phán xét vớ vẩn đi nhé
(*)Đề này hoàn toàn sai : Nếu lấy ngay n=0 hoặc n=1 thì hiệu trên không chia hết cho 59
P/s : đề này có thể dùng phương pháp quy nạp toán học để CM
Đặt A = 20 + 21 + 22 + 23 + 24 + 25 + ..... +25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1
=> A = ( 20 + 21 + 22 + 23 + 24 + 25 ) + ..... + ( 25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1 )
=> A = 20 ( 1 + 21 + 22 + 23 + 24 ) + ..... + 25n-6 ( 1 + 21 + 22 + 23 + 24 )
=> A = 1.31 + 25 .31 + ..... + 25n-6.31
=> A = 31.( 1 + 25 + ..... + 25n-6 )
Vì 31 ⋮ 31 => A ⋮ 31 ( đpcm )
cho tỉ cho bạn nào nhanh nhất
\(=5^n.125-15.5^n+64^n.8;64\equiv5\left(mod59\right)\Rightarrow64^n\equiv5^n\left(mod59\right)\)
\(\Rightarrow5^{n+3}-3.5^{n+1}+2^{6n+3}\equiv5^n\left(125-15+8\right)\equiv5^n.118\left(mod59\right)ma:118⋮59\Rightarrow dpcm\)