Tìm giá trị nhỏ nhất của biểu thức : A = |X−10| +2021
giúp mình ik mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(x-5\right)^2+10\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow C=\left(x-5\right)^2+10\ge10\forall x\)
Dấu \("="\) xảy ra khi: \(x-5=0\Leftrightarrow x=5\)
Vậy \(Min_C=10\) khi \(x=5\).
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
Ta có |x-10| > hoặc = 0
=> |x-10|+ 2021 > hoặc = 2021
Dấu "=" xảy ra khi x-10 = 0
=> x-10 = 0
=> x=10
Giá trị nhỏ nhất của biểu thức A=|x-10|+2021 là = 2021 khi x =10
Ta có : |x-10| > 0 => |x-10| + 2021 > 0 + 2021
A > 2021
Dấu"=" xảy ra khi x - 10 = 0 => x =10
Vậy Amin=2021 khi x = 10
\(x=2021\Leftrightarrow x+1=2022\\ \Leftrightarrow P=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x\\ P=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x\\ P=0\)
\(P=x^5-2022x^4+2022x^3-2022x^2+2022x-2021=x^4\left(x-2021\right)-x^3\left(x-2021\right)+x^2\left(x-2021\right)-x\left(x-2021\right)+\left(x-2021\right)\)
\(=\left(x-2021\right)\left(x^4-x^3+x^2-x+1\right)\)
\(=\left(2021-2021\right)\left(x^4-x^3+x^2-x+1\right)=0\)
\(A=|x-2012|+|x-2013|=|x-2012|+|2013-x|\ge|x-2012+2013-x|=1\)
Dấu = xảy ra \(< =>2012\le x\le2013\)
\(|x-2012|+|x-2013|\)
\(=|x-2012|+|-\left(2013-x\right)|\)
\(=|x-2012|+|2013-x|\)
Ta có
\(|x-2012|+|2013-x|\ge|x-2012+2013-x|\)
\(|x-2012|+|2013-x|\ge1\)
Dấu = xảy ra
\(\Leftrightarrow\left(x-2012\right)\left(2013-x\right)\ge0\)
TH 1 :
\(\hept{\begin{cases}x-2012\ge0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\-x\ge-2013\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}}\) \(\Rightarrow2012\le x\le2013\)
TH 2
\(\hept{\begin{cases}x-2012\le0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\-x\le-2013\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\x\ge2013\end{cases}}\) \(\Rightarrow x=\varnothing\)
Vậy min A = 1 khi và chỉ khi \(2012\le x\le2013\)
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(A=\left|x-10\right|+2021\ge2021\)
Dấu = xảy ra khi x = 10
\(A=\left|x-10\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi x=10