cho pt \(\left(m+2\right)^2x-2\left(m-1\right)x+m+1=0\)
a) giải pt khi m=1
b)tìm m để pt có ngh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m=-3 vào pt ta có:
\(\left(1\right)\Leftrightarrow2x^2-\left(m+1\right)x+m+1=0\\ \Leftrightarrow2x^2-\left(-3+1\right)x+\left(-3\right)+1=0\\ \Leftrightarrow2x^2-\left(-2\right)x-2=0\\ \Leftrightarrow x^2+x-1=0\)
\(\Delta=1^2-4.1\left(-1\right)=1+4=5\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b, Ta có: \(\Delta=\left[-\left(m+1\right)\right]^2-4.2\left(m+1\right)\\ =\left(m+1\right)^2-8\left(m+1\right)\\ =m^2+2m+1-8m-8\\ =m^2-6m-7\)
Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow m^2-6m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-1\\m\ge7\end{matrix}\right.\)
Là mx2 - 2(m+1)x + m + 3 = 0 , giải phương trình khi m = -2 nha bạnn
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
\(a,m=1\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
\(b,\) PT có 2 nghiệm pb \(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2+2\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2-8>0\\ \Leftrightarrow8m-4>0\Leftrightarrow m>\dfrac{1}{2}\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow4\left(m+1\right)^2-2\left(m^2+2\right)=10\\ \Leftrightarrow4m^2+8m+4-2m^2-4=10\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow m^2+4m-5=0\\ \Leftrightarrow\left(m+5\right)\left(m-1\right)=0\Leftrightarrow m=1\left(m>\dfrac{1}{2}\right)\)
Vậy m=1 thỏa mãn đề bài
a Khi m=1 thì (1) sẽ là x^2+1=0
=>x thuộc rỗng
b: Thay x=1 vào (1),ta được:
1^2-2(m-1)+m^2=0
=>m^2+1-2m+2=0
=>m^2-2m+3=0
=>PTVN
c: Thay x=-3 vào pt, ta được:
(-3)^2-2*(m-1)*(-3)+m^2=0
=>m^2+9+6(m-1)=0
=>m^2+6m+3=0
=>\(m=-3\pm\sqrt{6}\)
a) Thay m=2 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)
Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)
Ủa sai đề hoài dị :v mình thấy mà mình tức á
:v