K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2014

Gọi d là ƯCLN(2n+1;3n+1)

=>2n+1 chia hết cho d và 3n+1 chia hết cho d

=>3(2n+1)chia hết cho d và 2(3n+1) chia hết cho d

=>6n+3 chia hết cho d và 6n+2 chia hết cho d

=>(6n+3)-(6n+2) chia hết cho d

=>1 chia hết cho d;ƯCLN(2n+1;3n+1)=1

=>ƯC(2n+1;3n+1)=1

28 tháng 11 2018

a,Gọi d là UCLN(2n+1;3n+2)

Ta có:

3n+2 chia hết cho d

2n+1 chia hết cho d

=> 2(3n+2)-3(n+1)=1 chia hết cho d

=> d E {-1;1}

=> 2n+1 và 3n+2 luôn nguyên  tố cùng nhau

=> BCNN(2n+1,3n+2)=(2n+1)(3n+2)  (ĐPCM)

b, Gọi a là UCLN(2n+1;9n+6)

=> 2n+1 chia hết cho a

9n+6 chia hết cho a

=> 2(9n+6)-9(2n+1) chia hết cho a

=> 3 chia hết cho a=> a E {3;-3;1;-1}

Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc

2n+1 chia hết cho 3 <=> n=3k+1 (k E N)

Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1

còn nếu n khác: 3k+1

=> UCLN(2n+1;9n+6)=1

20 tháng 11 2021
Thủy uuhviyvihv ynm
1 tháng 12 2019

Gọi d là ƯCLN của 2n+1 và 3n+1

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}\Rightarrow}\left(6n+3\right)-\left(6n+2\right)⋮d}\Rightarrow1⋮d\)

=> Đpcm

1 tháng 12 2019

cảm ơn nhé

15 tháng 12 2016

làm câu

14 tháng 11 2015

Gọi ƯCLN(2n+1;3n+1)=d

Ta có: 2n+1 chia hết cho d

3(2n+1) chia hết cho d

6n+3 chia hết cho d

có 3n+1 chia hết cho d

2(3n+1) chia hết cho d

6n+2 chia hết cho d

=>6n+3-(6n+2) chia hết cho d

(6n-6n)+(3-2) chia hết cho d

=>1 chia hết cho d hay d=1

Vậy ƯCLN(2n+1;3n+1)=d

14 tháng 11 2015

Gọi d là ƯCLN(2n+1;3n+1) (d thuộc N*)

=>2n+1 chia hết cho d=>6n+3 chia hết cho d

=>3n+1 chia hết cho d=>6n+2 chia hết cho d

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+1;3n+1)=1

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

AH
Akai Haruma
Giáo viên
2 tháng 1 2024

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

2 tháng 3 2017

Đặt 2n+1 = k^2

3n+1 = m^2

Có : m^2 + k^2 = 5n + 2 

=> m^2 + k^2 chia 5 dư 2

Giả sử m^2 chia hết cho 5

và k^2 chia 5 dư 2 

-> chữ số tận cùng của k^2 là 2 hoặc 7 (loại)

=> m^2 chia 5 dư 1 

k^2 chia 5 dư 1 

=> m^2 - k^2 chia hết cho 5

=> n chia hết cho 5     (1)

Có: 2n+1 là số lẻ

=> k^2 lẻ

=> k lẻ

Đặt k = 2t+1

=> 2n+1 = (2t+1)^2

=> n = 2t(t+1)

=> n chia hết cho 2 

=> 3n +1 lẻ

=> k^2 lẻ 

=> k lẻ

k^2 = 3n+1

=> 3n = (k-1)(k+1)

Vì k lẻ => (k-1)(k+1) là 2 số chẵn liên tiếp 

=> 3n chia hết cho 8 

mà 3 không chia hết cho 8 

=> n chia hết cho 8 (2)

Từ (1) và (2) ta có : n chia hết cho 40