(2x-5)^4=(2x-5)^6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
1: =>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
2: =>7/6x=5/2:3,75=2/3
=>x=2/3:7/6=2/3*6/7=12/21=4/7
3: =>2x-3=0 hoặc 6-2x=0
=>x=3 hoặc x=3/2
4: =>-5x-1-1/2x+1/3=3/2x-5/6
=>-11/2x-3/2x=-5/6-1/3+1
=>-7x=-1/6
=>x=1/42
a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)
\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)
\(A\left(x\right)=2x^3-x+5\)
- Bậc của đa thức A(x) là 3
- Hệ số tự do: 5
- Hệ số cao nhất: 2
b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)
\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)
\(B\left(x\right)=-4x^5+2x+3\)
- Bậc của đa thức B(x) là 5
- Hệ số tự do: 3
- Hệ số cao nhất: \(-4\)
c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)
\(C\left(y\right)=5y^2-2y+3+3y^3-6y\)
\(C\left(y\right)=5y^2-8y+3+3y^3\)
\(C\left(y\right)=3y^3+5y^2-8y+3\)
- Bậc của đa thức C(y) là 3
- Hệ số tự do: 3
- Hệ số cao nhất: 3
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
5^x + 5^ ( x + 2 ) = 650
5x + 5x . 52 = 650
5x .( 1 + 25 ) = 650
5x . 26 = 650
5x = 650 : 26
5x = 25
5x = 52
=> x = 2
Vậy x = 2
\(DK:x\ge\frac{5}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}+1=4\)
\(\Leftrightarrow2\sqrt{2x-5}=0\)
\(\Leftrightarrow x=\frac{5}{2}\left(n\right)\)
Vay PT co nghiem la \(x=\frac{5}{2}\)
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
⇔ \(\sqrt{2x-5+2.3\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
⇔ \(\text{ |}\sqrt{2x-5}+3\text{ |}+\text{ |}\sqrt{2x-5}-1\text{ |}=4\)
⇔ \(\sqrt{2x-5}+3+\text{ |}\sqrt{2x-5}-1\text{ |}=4\) ( x ≥ \(\dfrac{5}{2}\) ) ( 1)
+) Với : \(\sqrt{2x-5}\text{≥}1\) ⇔ x ≥ 3 , ta có :
\(\left(1\right)\text{⇔}\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)
\(\text{⇔}2\sqrt{2x-5}=2\)
\(\text{⇔}x=3\left(TM\right)\)
+) Với : \(\sqrt{2x-5}< 1\) ⇔ x < 3 , ta có :
\(\left(1\right)\text{⇔}\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)
\(\text{⇔}4=4\) ( luôn đúng với : \(3>x\text{≥}\dfrac{5}{2}\) )
KL...............
a) (2xy+5)(4x^2+5): = 2xy * 4x^2 + 2xy * 5 + 5 * 4x^2 + 5 * 5 = 8x^3y + 10xy + 20x^2 + 25 b) (6xy+4)(2x^2+1): = 6xy * 2x^2 + 6xy * 1 + 4 * 2x^2 + 4 * 1 = 12x^3y + 6xy + 8x^2 + 4 c) (9x^2+4)(3x+5): = 9x^2 * 3x + 9x^2 * 5 + 4 * 3x + 4 * 5 = 27x^3 + 45x^2 + 12x + 20 d) (-2xy+6)(1/2xy+7): = -2xy * 1/2xy + (-2xy) * 7 + 6 * 1/2xy + 6 * 7 = -xy + (-14xy) + 3 + 42 = -15xy + 45 e) (4x+1)(2x^2+5x+2): = 4x * 2x^2 + 4x * 5x + 4x * 2 + 1 * 2x^2 + 1 * 5x + 1 * 2 = 8x^3 + 20x^2 + 8x + 2x^2 + 5x + 2 = 8x^3 + 22x^2 + 13x + 2 f) (2x^2y+3x)(2x+1): = 2x^2y * 2x + 2x^2y * 1 + 3x * 2x + 3x * 1 = 4x^3y + 2x^2y + 6x^2 + 3x g) (4xy+5x^2y)(2xy+6): = 4xy * 2xy + 4xy * 6 + 5x^2y * 2xy + 5x^2y * 6 = 8x^2y^2 + 24xy + 10x^3y + 30x^2y = 8x^2y^2 + 30x^2y + 24xy h) (-1/2x^2+6)(4xy+5): = -1/2x^2 * 4xy + (-1/2x^2) * 5 + 6 * 4xy + 6 * 5 = -2xy + (-5/2x^2) + 24xy + 30 = 22xy + (-5/2x^2) + 30
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
\(\left(2x-5\right)^4=\left(2x-5\right)^6\)
\(\Leftrightarrow\left(2x-5\right)^6-\left(2x-5\right)^4=0\)
\(\Leftrightarrow\left(2x-5\right)^4.\left[\left(2x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-5\right)^4=0\\\left(2x-5\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x-5=\pm1\end{cases}}\)
giải nốt