K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Ta có : DM // AB => \(\frac{AM}{AC}=\frac{BD}{BC}\) =>AM.BC =BD.AC =AB.AC

cm tương tự AN.CB =CE.AB =AC.AB

=>AM.BC =AN.CB

=>AM =AN

10 tháng 2 2018

Vì tam giác ABC cân tại A nên AB = AC = 10cm

Vì MN// BC, theo định lí Ta – let ta có:

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Mà AB = AC nên AM = AN = 4cm

Suy ra :

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Xét ΔABC có MN//BC

nên AM/AB=AN/AC

=>AN/20=4/20=1/5

nên AN=4(cm)

19 tháng 3 2018

M nằm giữa A và B nên: AB = AM + MB = 10cm

Theo định lí Ta let ta có:

Bài tập: Định lí Ta-lét trong tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

12 tháng 11 2023

Hiệu số phần bằng nhau là

4 - 3 = 1 ( phần )

Chiều dài khu đất là

50 : 1 x 4 = 200 ( m )

Chiều rộng khu đất là

200 - 50 = 150 ( m )

Diện tích khu đất là

200 x 150 = 30 000 ( m2 ) = 3 ha

ĐS : 

12 tháng 11 2023

 Qua M kẻ đường thẳng song song với AC cắt AB, AN lần lượt tại P và Q.

 Ta thấy \(\widehat{ANC}=\widehat{QNM}\) (2 góc đối đỉnh), \(NM=NC\) (gt), \(\widehat{NCA}=\widehat{NMQ}\) (do AC//MQ) nên \(\Delta NAC=\Delta NQM\left(g.c.g\right)\)

\(\Rightarrow AC=MQ\)

 Áp dụng định lý Thales trong tam giác ABC, ta có: \(\dfrac{BM}{BC}=\dfrac{PM}{AC}=\dfrac{PM}{MQ}\) \(\Rightarrow\dfrac{PM}{MQ}=\dfrac{1}{3}\)

 Lại theo định lý Thales, trong tam giác APM, có: \(\dfrac{DE}{PM}=\dfrac{AE}{AM}\), trong tam giác AMQ, có \(\dfrac{AE}{AM}=\dfrac{EF}{MQ}\).

 Từ đó, ta có \(\dfrac{DE}{PM}=\dfrac{EF}{MQ}\) \(\Rightarrow\dfrac{DE}{EF}=\dfrac{PM}{MQ}\). Mà \(\dfrac{PM}{MQ}=\dfrac{1}{3}\left(cmt\right)\) nên \(\dfrac{DE}{EF}=\dfrac{1}{3}\), hay \(EF=3DE\) (đpcm)

a) Xét ΔABC có 

MN//BC(gt)

Do đó: \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)(Định lí Ta lét)

Suy ra: \(\dfrac{6}{4}=\dfrac{8}{NC}\)

hay \(NC=\dfrac{16}{3}cm\)

Ta có: AM+MB=AB(M nằm giữa A và B)

nên AB=6+4=10(cm)

Ta có: AN+NC=AC(N nằm giữa A và C)

nên \(AC=8+\dfrac{16}{3}=\dfrac{40}{3}cm\)

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{40}{3}\right)^2=\dfrac{2500}{9}\)

hay \(BC=\dfrac{50}{3}cm\)

Xét ΔABC có 

MN//BC(gt)

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{\dfrac{50}{3}}=\dfrac{6}{10}\)

\(\Leftrightarrow MN=\dfrac{6\cdot\dfrac{50}{3}}{10}=\dfrac{100}{10}=10cm\)

Vậy: MN=10cm; \(NC=\dfrac{16}{3}cm\)\(BC=\dfrac{50}{3}cm\)

10 tháng 12 2018

nhanh lên mình cần gấp lắm

10 tháng 12 2018

huhu mình mong các bạn có thể làm nhanh lên cho mình