Cho tam giác ABC, D nằm trên tia phân giác của góc ngoài đỉnh C (\(D\ne C\)).CMR: CA+CB<DA+DB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC. Điểm M nằm trên đường phân giác của góc ngoài đỉnh C. Chứng minh AC + CB < AM + MB
Trên tia đối của tia CB lấy điểm A' sao cho CA' = CA. Sử dụng tính chất của tam giác cân ta có được CM là đường trung trực của AA' Þ MA = MA'. Sử dụng bất đẳng thức trong tam giác A'MB ta có: CA + CB = CA' + CB = BA' <MA' + MB Þ CA + CB < MA + MB.
A B C M D H
Từ A vẽ AH vuông góc với CM cắt BC tại D.
\(\Delta MAH=\Delta MDH\left(cgc\right)\)(tự chứng minh)
\(=>MA=MD\)(2 cạnh tương ứng)
Theo bất đẳng thức tam giác : MD+MB>BD
nên MA+MB>BD (1)
Ta có : BD=BC+CD
Mà CA=CD(tự chứng minh)nên BD=CA+CB(2)
Từ (1) và (2) => CA+CB<MA+MB
Trên tia đối tia CB lấy điểm E sao cho CE = CA. Nối MA, ME nên ∆ ACE cân tại C có CM là đường phân giác nên CM là đường trung trực (tính chất tam giác cân)
⇒ MA = ME (tính chất đường trung trực)
Ta có: AC + BC = CE + BC = BE (1)
MA + MB = ME + MB (2)
Trong ∆ MBE, ta có: BE < MB+ ME (bất đẳng thức tam giác) (3)
Từ (1), (2) và (3) suy ra: AC + CB < AM + MB.
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)
Kẻ \(AH\perp MC\)cắt BC ở K
Xét hai tam giác vuông AHC và KHC có:
HC: cạnh chung
\(\widehat{ACH}=\widehat{KCH}\)(gt)
Suy ra \(\Delta AHC=\Delta KHC\left(cgv-gnk\right)\)
\(\Rightarrow AH=KH\) và AC = KC (hai cạnh tương ứng)
Xét hai tam giác vuông AMH và KMH có:
MH: cạnh chung
\(AH=KH\)(cmt)
Suy ra \(\Delta AMH=\Delta KMH\left(2cgv\right)\)
\(\Rightarrow AM=KM\)(hai cạnh tương ứng)
Áo dụng BĐT tam giác vào tam giác BMK, ta được: \(BM+MK>BK\)
\(\Rightarrow BM+AM>BC+CK\)
\(\Rightarrow BM+AM>BC+AC\left(đpcm\right)\)