K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

\(-x^2=\frac{-\sqrt{3}}{\sqrt{75}}\)

\(-x^2=-\frac{\sqrt{3}}{5\sqrt{3}}\)

\(-x^2=-\frac{1}{5}\)

\(x^2=\frac{1}{5}\)

\(x=\pm\sqrt{\frac{1}{5}}\)

2 tháng 9 2017

Ta có : \(\sqrt{3}.x-\sqrt{75}=0\)

\(\Leftrightarrow\sqrt{3}.x-5\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{3}\left(x-5\right)=0\)

Vì \(\sqrt{3}\ne0\)

Nên : x - 5 = 0

Vậy x = 5. 

2 tháng 9 2017

b) Ta có : \(\sqrt{2}.x+\sqrt{2}=\sqrt{8}+\sqrt{32}\)

\(\Leftrightarrow\sqrt{2}\left(x+1\right)=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}\left(x+1\right)-6\sqrt{2}=0\)

\(\Leftrightarrow\sqrt{2}.\left(x+1-6\right)=0\)

\(\Leftrightarrow\sqrt{2}.\left(x-5\right)=0\)

Vì \(\sqrt{2}\ne0\)

Nên x - 5 = 0

Suy ra : x = 5

Bài 1:

a) Ta có: \(\sqrt{243}-\frac{1}{2}\sqrt{12}-2\sqrt{75}+\sqrt{27}\)

\(=\sqrt{3}\cdot9-\frac{1}{2}\cdot\sqrt{3}\cdot2-2\cdot\sqrt{3}\cdot5+\sqrt{3}\cdot3\)

\(=\sqrt{3}\left(9-1-10+3\right)\)

\(=\sqrt{3}\cdot1=\sqrt{3}\)

b) Ta có: \(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\frac{5}{1+\sqrt{6}}-6\sqrt{\frac{1}{6}}\)

\(=\frac{\left(2\sqrt{3}-3\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\cdot\left(\sqrt{3}+\sqrt{2}\right)}+\frac{5\cdot\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\sqrt{36\cdot\frac{1}{6}}\)

\(=-\sqrt{6}+\frac{5\left(\sqrt{6}-1\right)}{5}-\sqrt{6}\)

\(=-2\sqrt{6}+\sqrt{6}-1\)

\(=-\sqrt{6}-1\)

Bài 2: Rút gọn

Ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}+2}\)

13 tháng 3 2020

\(B=\frac{x}{x-16}+\frac{2}{\sqrt{x}-4}+\frac{2}{\sqrt{x}+4}\)

\(=\frac{x}{x-16}+\frac{2\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{2\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{x}{x-16}+\frac{2\sqrt{x}+8}{x-16}+\frac{2\sqrt{x}-8}{x-16}\)

\(=\frac{x+4\sqrt{x}}{x-16}=\frac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\frac{\sqrt{x}}{\sqrt{x}-4}\)

\(A=2\sqrt{12}-\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=2\sqrt{12}-\sqrt{75}+\left(2-\sqrt{3}\right)\)(vì \(\sqrt{3}< \sqrt{4}=2\))

\(\Rightarrow\frac{1}{2}A=\sqrt{12}-\frac{\sqrt{75}}{2}+1-\frac{\sqrt{3}}{2}\)

\(=\sqrt{12}+1-\frac{\sqrt{3}\left(1+5\right)}{2}=\sqrt{12}-3\sqrt{3}+1\)

\(=\sqrt{3}+1\)

\(B-\frac{1}{2}A=0\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-4}=\sqrt{3}+1\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{3}+1\right)\left(\sqrt{x}-4\right)\)

\(\Leftrightarrow\sqrt{x}=\sqrt{3x}+\sqrt{x}-4\sqrt{x}-4\)

\(\Leftrightarrow\sqrt{3x}-4\sqrt{x}-4=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{3}-4\right)=4\Leftrightarrow\sqrt{x}=\frac{4}{\sqrt{3}-4}\)

\(\Rightarrow x=\left(\frac{4}{\sqrt{3}-4}\right)^2=\frac{304+128\sqrt{3}}{-173}\)

13 tháng 3 2020

Mù mịt quá, sửa từ dòng 7 từ dưới lên 

\(=-\sqrt{3}+1\)

\(B-\frac{1}{2}A=0\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-4}=-\sqrt{3}+1\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{x}-4\right)\left(1-\sqrt{3}\right)\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x}-4-\sqrt{3x}+4\sqrt{3}\)

\(\Leftrightarrow-4-\sqrt{3x}+4\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{3}-4\)

\(\Leftrightarrow\sqrt{x}=\frac{4\left(\sqrt{3}-1\right)}{\sqrt{3}}\)

\(\Leftrightarrow x=\frac{64-32\sqrt{3}}{3}\)

16 tháng 12 2017

\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)

\(A=6\sqrt{3^2.3}-2\sqrt{5^2.3}-\frac{1}{2}\sqrt{10^2.3}\)

\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)

\(A=3\sqrt{3}\)

vậy \(A=3\sqrt{3}\)

\(B=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)  \(ĐKXĐ:x>0;x\ne1\)

\(B=\left[1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)

\(B=\left[1+\sqrt{x}\right]\left[1-\sqrt{x}\right]\)

\(B=1-x\)

vậy \(B=1-x\)

\(C=\sqrt[3]{64}-\sqrt[3]{-125}+\sqrt[3]{216}\)

\(C=\sqrt[3]{4^3}-\sqrt[3]{\left(-5\right)^3}+\sqrt[3]{6^3}\)

\(C=4+5+6\)

\(C=15\)

vậy \(C=15\)

16 tháng 12 2017

Cho mk giải câu a:

\(A=6\sqrt{27}-2\sqrt{75}-\frac{1}{2}\sqrt{300}\)

\(A=18\sqrt{3}-10\sqrt{3}-\frac{1}{2}10\sqrt{3}\)

\(A=18\sqrt{3}-10\sqrt{3}-10:2\sqrt{3}\)

\(A=18\sqrt{3}-10\sqrt{3}-5\sqrt{3}\)

\(A=\left(18-10-5\right)\sqrt{3}\)

\(A=3\sqrt{3}\)

17 tháng 9 2020

ĐKXĐ: \(x\ge0,x\ne9\)

a) \(P=\frac{3\sqrt{x}+2}{\sqrt{x}+1}+\frac{2\sqrt{x}+3}{\sqrt{x}-3}-\frac{3\left(3\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x-3}\right)}\)

\(=\frac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+3\left(3\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{3x-9\sqrt{x}+2\sqrt{x}-6+2x+2\sqrt{x}-3\sqrt{x}-3-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{5x-17\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{5x-15\sqrt{x}-2\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(5\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{5\sqrt{x}-2}{\sqrt{x}+1}\)

b) Ta có: \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)

Do đó: \(P=\frac{5\left(\sqrt{3}+1\right)-2}{\left(\sqrt{3}+1\right)+1}=\frac{5\sqrt{3}+3}{\sqrt{3}+2}=\frac{\left(5\sqrt{3}+3\right)\left(2-\sqrt{3}\right)}{\left(\sqrt{3}+2\right)\left(2-\sqrt{3}\right)}=7\sqrt{3}-9\)

c) Ta có \(P=\frac{5\sqrt{x}-2}{\sqrt{x}+1}=\frac{5\sqrt{x}+5-7}{\sqrt{x}+1}\)

\(P=5-\frac{7}{\sqrt{x}+1}\)

Vì \(\frac{7}{\sqrt{x}+1}>0\)nên \(P\)có giá trị nhỏ nhất khi và chỉ khi \(\frac{7}{\sqrt{x}+1}\)lớn nhất

\(\Leftrightarrow\sqrt{x}+1\)nhỏ nhất \(\Leftrightarrow x=0\)

Khi đó minP=5-7=-2

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

\(ĐK:x\ge1,y\ge2,z\ge3\)

\(PT\Leftrightarrow\sqrt{x-1}+\frac{1}{\sqrt{x-1}}+\sqrt{y-2}+\frac{1}{\sqrt{y-2}}+\sqrt{z-3}+\frac{1}{\sqrt{z-3}}=6\)

Theo bđt AM-GM thì \(VT\ge6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-1}=\frac{1}{\sqrt{x-1}}=1\\\sqrt{y-2}=\frac{1}{\sqrt{y-2}}=1\\\sqrt{z-3}=\frac{1}{\sqrt{z-3}}=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=4\end{cases}}\)