K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

 \(\Rightarrow\frac{B}{2}=\frac{1}{2\sqrt{1}}+\frac{1}{2\sqrt{2}}+...+\frac{1}{2\sqrt{2010}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2010}+\sqrt{2011}}\)

        \(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2011}-\sqrt{2010}}{2011-2010}\)

          \(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\)

        \(=\sqrt{2011}-1>43\)

=>B> 43.2=86

Vậy B> 86

tk mk nha 

Neu mk giai sai cho nao mong các bn gop y va thong cam cho mk nha

mk xin cam on

18 tháng 10 2015

TA có \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}}>\frac{2}{\sqrt{n+1}+\sqrt{n}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng BĐT ta có :

\(B=\frac{1}{\sqrt{1}}+...+\frac{1}{\sqrt{2010}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2011}-\sqrt{2010}\right)=2\left(\sqrt{2011}-1\right)\) (1)

\(2\left(\sqrt{2011}-1\right)>2\left(\sqrt{1936}-1\right)=2\left(44-1\right)=86\) (2)

 Từ (1) và (2) => B > 86

 

 

 

2 tháng 8 2016

Bài 2: 

a) \(A=\sqrt{2012^2+2012^2\cdot2013^2+2013^2}\)

\(=\sqrt{2012^2+\left(2012\cdot2013\right)^2+2013^2}\)

\(=2012+2012\cdot2013+2013\)

Vậy A  là 1 số tự nhiên

18 tháng 2 2020

Giúp mình với

12 tháng 4 2020

Chứng minh gì vậy bạn

29 tháng 9 2015

Câu a:

Có dạng tổng quát:\(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{x+1}}=\frac{1}{\sqrt{\left(k+1\right)k}\left(\sqrt{k+1}+\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{\left(k+1\right)k}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k-1}}\)

Áp dụng kết quả trên suy ra câu a