K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

\(\left(x^2+4x+3\right)\left(x^2+10x+24\right)=72\)

\(\Leftrightarrow x^4+10x^3+24x^2+4x^3+40x^2+96x+3x^2+30x+72=72\)

\(\Leftrightarrow x^4+14x^3+67x^2+126x+72=72\)

\(\Leftrightarrow x^4+14x^3+67x^2+126x=0\)

\(\Leftrightarrow x\left(x^3+14x^2+67x+126\right)=0\)

\(\Leftrightarrow x\left(x^2+7x+18\right)\left(x+7\right)=0\)

Vì \(x^2+7x+18>0\) nên:

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}\)

1 1 5(4x+7y=164x-3y =-24* y 2b)1 1 3Bài 1. Giải hệ phương trình: a)x y 2Bài 2. Giải các phương trình sau:a) x- 10x + 21 = 0;b) 5x – 17x + 12 = 0c) 2x* - 7x? – 4 = 0;16d)x-3 1-x30= 3Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.X x,= 4b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏaX X,Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0a) Giải phương trình (1) với m= -4b) Với x1, X2 là...
Đọc tiếp

1 1 5
(4x+7y=16
4x-3y =-24
* y 2
b)
1 1 3
Bài 1. Giải hệ phương trình: a)
x y 2
Bài 2. Giải các phương trình sau:
a) x- 10x + 21 = 0;
b) 5x – 17x + 12 = 0
c) 2x* - 7x? – 4 = 0;
16
d)
x-3 1-x
30
= 3
Bài 3. Cho phương trình x - 2(m + 1)x + 4m = 0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m.
X x,
= 4
b) Tìm m để phương trình (1) có hai nghiêm phân biệt thỏa
X X,
Bài 4. Cho phương trình ấn x : x-4x+m-1%3D0
a) Giải phương trình (1) với m= -4
b) Với x1, X2 là nghiệm phương trình (1). Tìm giá trị của m, biết x1- X2 = 2
Bài 5. Một hình chữ nhật có chiều rộng bé hơn chiều dài là 4m, biết diện tích 320m?. Tính chiều
dài, chiều rộng hình chữ nhật.
Bài 6. Đội một gặt lúa trong 4 giờ thì đội hai đến gặt. Hai đội gặt trong 8 giờ thì xong công việc.
Hỏi nếu gặt một mình thì mỗi đội gặt trong bao lâu thì xong, biết nếu gặt một mình đội một gặt
nhiều thời gian hơn đội hai là 8 giờ.
(1)
Bài 7. Cho tam giác ABC có ba góc nhọn nối tiếp (O). Vẽ hai đường cao BE và CF.
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Chứng minh AFE = ACB
c) Chứng minh AO1EF

0
AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$

$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$

$\Leftrightarrow x-2=0$ hoặc $4-x=0$

$\Leftrightarrow x=2$ hoặc $x=4$ (tm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$

$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$

Với $4x^3-3x^2+6x-4=0(*)$

Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$

Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:

$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$

Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)

Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)

 

NV
25 tháng 3 2023

ĐKXĐ: \(x\ne0\)

Phương trình tương đương:

\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\)

Đặt \(4x-10+\dfrac{7}{x}=t\)

\(\Rightarrow\dfrac{4}{t+2}+\dfrac{3}{t}=1\)

\(\Rightarrow4t+3\left(t+2\right)=t\left(t+2\right)\)

\(\Leftrightarrow t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x-10+\dfrac{7}{x}=-1\\4x-10+\dfrac{7}{x}=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x^2-9x+7=0\left(vn\right)\\4x^2-16x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

18 tháng 10 2021

\(a,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\\ b,\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow x=1\\ c,\Leftrightarrow\left(1-2x\right)^2-\left(3x-2\right)^2=0\\ \Leftrightarrow\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\\ \Leftrightarrow\left(3-5x\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\\ d,\Leftrightarrow\left(x-2\right)^3=-\left(5-2x\right)^3\\ \Leftrightarrow x-2=-\left(5-2x\right)=2x-5\\ \Leftrightarrow x=3\)

a: =>5x-5+17x=1-12x-4

=>22x-5=-12x-3

=>34x=2

hay x=1/17

b: =>\(\left(x-3\right)^2-4x\left(x-3\right)=0\)

=>(x-3)(-3x-3)=0

=>x=3 hoặc x=-1

c: =>(x-4)(x-6)=0

=>x=4 hoặc x=6

20 tháng 10 2018

Đặt \(\hept{\begin{cases}x^2+3x-4=a\\3x^2+7x+4=b\end{cases}\Rightarrow4x^2+10x=a+b}\)

   \(\left(x^2+3x-4\right)^3+\left(3x^2+7x+4\right)^3=\left(4x^2+10x\right)^3\)

\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow3ab\left(a+b\right)=0\)

Nếu \(a=0\Rightarrow x^2+3x-4=0\Rightarrow x\left(x+4\right)-\left(x+4\right)=0\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

Nếu \(b=0\Rightarrow3x^2+7x+4=0\Rightarrow3x\left(x+1\right)+4\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(3x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-\frac{4}{3}\end{cases}}\)

Nếu \(a+b=0\Rightarrow4x^2+10x=0\Rightarrow2x\left(2x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}\)

26 tháng 10 2015

bạn phải phân tích đa thức thành nhân tử để hạ bậc. Một mẹo mình mách bạn thế này . bạn tìm một giá trị của x thỏa mãn thì dựa vào đó đó phân tich. Thông thường giá trị đó là ước của hằng số trong vế trái ví dụ câu a bạn thay ước của 12. mình thấy -1 thỏa mãn vậy khi phân tích đa thức thành nhân tử chắc chắn sẽ xuất hiện nhân tử là x+1 và dựa vào đó mình phân tích như sau:

x3-6x2+5x+12=0

<=> x3+x2-7x2-7x+12x+12=0

<=> (x3+x2)-(7x2+7x)+(12x+12)=0

<=> x2(x+1​)-7x(x+1​)+12(x+1​)=0

<=> (x+1)(x2-7x+12)=0

Phân tích tiếp nhóm x2-7x+12 = x2-3x-4x+12 = x(x-3)-4(x-3) = (x-3)(x-4)

vậy phương trình tương đương

<=> (x+1)(x-3)(x-4) = 0

đến đây dễ dàng suy ra x = -1; 3; 4

Các câu còn lại tương tự bạn tự làm vì quá nhiều mình không gõ được

20 tháng 5 2021

Sửa đề:\(\frac{3}{x^2+5x+4}+\frac{2}{x^2+10x+24}=\frac{4}{3}=\frac{9}{x^2+3x-18}\)

\(\Leftrightarrow\frac{3}{\left(x+1\right)\left(x+4\right)}+\frac{2}{\left(x+4\right)\left(x+6\right)}=\frac{9}{\left(x-3\right)\left(x+6\right)}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+6}=\frac{1}{x-3}-\frac{1}{x+6}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x-6}=\frac{1}{x-3}-\frac{1}{x+6}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+6}-\frac{1}{x-3}+\frac{1}{x+6}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}=\frac{4}{3}\)

Tự giải tiếp

20 tháng 5 2021

Quyên sai rồi, tử là 1 mới đc tách kiểu đó, mà 2 pt đó bằng 4/3 thì xét 1 pt thôi được rồi, bước 3 từ dưới lên sai bét 

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

PT $\Leftrightarrow (4x+3)^2(2x^2+3x+1)=72$

$\Leftrightarrow (16x^2+24x+9)(2x^2+3x+1)=72$

Đặt $2x^2+3x+1=a$ thì pt trở thành:

$(8a+1)a=72$

$\Leftrightarrow 8a^2+a-72=0$

$\Leftrightarrow 16a^2+2a-144=0$

$\Leftrightarrow (4a+\frac{1}{4})^2=\frac{2305}{16}$

$\Rightarrow a=\frac{1\pm \sqrt{2305}}{16}$

$\Leftrightarrow 2x^2+3x+1=\frac{1\pm \sqrt{2305}}{6}$

Đến đây bạn giải pt bậc 2 bình thường.