K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Chứng minh: 

\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow2\left(\sqrt{b+1}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow\frac{2}{\sqrt{b+1}+\sqrt{b}}< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow2\sqrt{b}< \sqrt{b+1}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{b}< \sqrt{b+1}\)(đúng)

Cái còn lại tương tự

22 tháng 12 2015

bai nay dai lam nhung ban cu lam theo ncac buoc sau:
b1: lấy dữ liệu đầu bài để nhận với 1 số mà bằng được với cái phải chứng minh thế là ra
b2: nhân đa thức với đa thức(tự làm)
b3:ghép các phân thức đồng dạng với nhau.
b4:kết luận

29 tháng 8 2018

Theo giả thiết: \(a+b+c=3\Rightarrow b+c=3-a\). Tương tự: a+b=3-a và c+a=3-b

Khi đó \(\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}=\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\)

Ta chứng minh BĐT phụ sau:

\(\frac{1}{a^2-a+3}\le\frac{4-a}{9}\)(1)

Thật vậy, BĐT (1) \(\Leftrightarrow9\le\left(4-a\right)\left(a^2-a+3\right)\)

\(\Leftrightarrow9\le-a^3+5a^2-7a+12\)\(\Leftrightarrow-a^3+5a^2-7a+3\ge0\)

\(\Leftrightarrow-a^3+a^2+4a^2-4a-3a+3\ge0\)

\(\Leftrightarrow-a^2\left(a-1\right)+4a\left(a-1\right)-3\left(a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(-a^2+4a-3\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(-a^2+a+3a-3\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left[-a\left(a-1\right)+3\left(a-1\right)\right]\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(3-a\right)\ge0\)(2)

Ta thấy \(a;b;c>0\) và \(a+b+c=3\Rightarrow a< 3\)\(\Rightarrow3-a>0\)

Mà \(\left(a-1\right)^2\ge0\forall a\). Nên \(\left(a-1\right)^2\left(3-a\right)\ge0\)

Do đó: BĐT (2) luôn đúng với mọi 0<a<3 => BĐT (1) cũng đúng

Chứng minh tương tự \(\frac{1}{b^2-b+3}\le\frac{4-b}{9};\frac{1}{c^2-c+3}\le\frac{4-c}{9}\)

Từ đó suy ra:

\(\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\le\frac{12-\left(a+b+c\right)}{9}=\frac{12-3}{9}=1\)(Do a+b+c=3)

=> ĐPCM.

29 tháng 12 2018

Cho x,y,z € Z+ tm: x+y+z=4

Tính A= \(\sqrt{ }\)x(4-y)(4-z) +\(\sqrt{ }\)y(4-x)(4-x) +\(\sqrt{ }\)z(4-x)(4-y) -\(\sqrt{ }\)xyz

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

29 tháng 9 2016

Ta có :

\(a^2+b^2+c^2-2bc-2ca+2ab\)

\(=\left(a+b-c\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2-2bc-2ca+2ab\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge2bc+2ca-2ab\)

Dấu bằng xảy ra khi \(a+b=c\)

Mà \(\frac{5}{3}< \frac{6}{3}=2\)

\(\Rightarrow a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab\le a^2+b^2+c^2< 2\)

\(\Rightarrow2bc+2ac-2ab< 2\)

Do a ,b , c > 0

\(\Rightarrow\frac{2bc+2ac-2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{2bc}{2abc}+\frac{2ac}{2abc}-\frac{2ab}{2abc}< \frac{2}{2abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)

Vậy ...

29 tháng 9 2016

Ta có:\(\left(a+b-c\right)^2\ge0\)(với a,b,c > 0)

<=> \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)

<=> \(bc+ac-ab\le\frac{a^2+b^2+c^2}{2}=\frac{5}{6}< 1\)

Chia 2 vế của bđt cho abc >0 ta dc

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)