tam giác abc cân tại a. kẻ đường cao BH, CK
a) CM tam giác BHC = tam giác BKC
b) CM AH=AK
c) Tứ giác BKHC là hình gì?Vì sao?
GIÚP MÌNH NHA, MÌNH BỊ NGU HÌNH HỌC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR:
+Xét tg vuông BKH và tg CHB ta có
Cạnh huyền BC chung (1)
\(^SABC=\frac{AB.CK}{2}=\frac{AC.BH}{2}\Rightarrow AB=AC\Rightarrow BH=CK\)
Từ (2) với (2) => tg = BKC tg= CHB (cạnh huyền và cạnh góc vuông tương ứng bằng nhau) BK = CH
Mà AB cân tại A AC=AK+BK=AH+CH=AK+CK=>tg AHK cân tại A
+Xét tg cân AKH có
^AKH =^AHK=(180^-BAC)(2)(3)
^ABC=(180-BAC)
Từ (3) (4) vậy
Có hai góc đồnng vị
Nên BKHC là hình thang vuông
a) Xét tứ giác ABDC có
H là trung điểm của đường chéo BC(AH là đường trung tuyến ứng với cạnh BC trong ΔABC)
H là trung điểm của đường chéo AD(A và D đối xứng nhau qua H)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABDC có AB=AC(ΔABC cân tại A)
nên ABDC là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: ΔABC cân tại A(gt)
mà AH là đường trung tuyến ứng với cạnh đáy BC(gt)
nên AH là đường cao ứng với cạnh BC(Định lí tam giác cân)
\(\Leftrightarrow AH\perp BC\)
Ta có: AH\(\perp\)BC(cmt)
AH\(\perp\)AE(gt)
Do đó: BC//AE(Định lí 1 từ vuông góc tới song song)
hay HC//AE
Xét ΔAED có
H là trung điểm của AD(A và D đối xứng nhau qua H)
HC//AE(cmt)
Do đó: C là trung điểm của DE(Định lí 1 đường trung bình của tam giác)
Xét ΔAED có
H là trung điểm của AD(A và D đối xứng nhau qua H)
C là trung điểm của DE(cmt)
Do đó: HC là đường trung bình của ΔAED(Định nghĩa đường trung bình của tam giác)
\(\Leftrightarrow HC=\dfrac{AE}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà \(HC=\dfrac{BC}{2}\)(H là trung điểm của BC)
nên AE=BC
Xét tứ giác ABCE có
AE//BC(cmt)
AE=BC(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a)Tam giác KBC=tam giácHCB(cạnh huyền góc nhọn)
=>BH=CK ; BK=CH
Mà AB=AC=>AK=KH=>Tam giác AKH cân tại A
=>Góc AKH=Góc KBC mà 2 góc đồng vị
=>KH//BC=>KHCB là hình thang,có BH=CK
=>KHCB là hình thang cân
b)Tứ giác KIBM có:KH=BM ; KH//BM
=>KHBM là hình bình hành
=>KB=HM
Mà HC=KB
=>HC=MH=> Tam giác HMC cân tại H
c)Để A,O,M thẳng hàng thì tam giác ABC phải là tam giác đều (bạn tự chứng minh nha)
Chúc bạn học tốt!!
a: Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
b: Xét ΔMBC vuông tại M và ΔNCB vuông tại N có
BC chung
MC=BN
Do đó: ΔMBC=ΔNCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c. Hình chữ nhật ADBH là hình vuông \(\Leftrightarrow\) AB vuông góc HD
Mà AC // HD (do ADHC là hình bình hành)
\(\Leftrightarrow\) AB vuông góc với AC
\(\Leftrightarrow\) góc BAC = 90 độ
\(\Leftrightarrow\) tam giác ABC vuông tại A
Vậy, khi tam giác ABC vuông cân tại A thì tứ giác ADBH là hình vuông .
a , xetys tứ giác adme có :
me//ad (vì me//ac)
md//ae(vì md//ab)
suy ra tứ giác adme là hbh