1/Tính
a) \(\left(\frac{7}{2}+\frac{17}{3}\right).\frac{8}{19}-\left(\frac{5}{2}+\frac{14}{3}\right).\frac{8}{19}\)
b)\(\frac{3^{2014}.8^{19}}{6^{60}.3^{1955}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 6/7 + (2/11 - 6/7) - (13/11 + 1)
= 6/7 + 2/11 - 6/7 - 13/11 - 1
= (6/7 - 6/7) - (13/11 - 2/11) - 1
= 0 - 1 - 1
= -2
b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)
d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)
Làm tiếp:
\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)
\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)
Bài 2:
Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)
\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)
\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)
\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)
Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)
Bài 1:Tính
a, Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)
Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)
\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)
\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)
\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)
\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)
Áp dụng vào bài toán ta có đáp số là:1
b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)
c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)
d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)
e,Xét mẫu số ta có:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)
1. a) \(\frac{-2}{7}+\frac{15}{23}+\frac{\left(-15\right)}{17}+\frac{4}{19}+\frac{8}{23}\)
\(=\left(\frac{-2}{7}+\frac{-5}{7}\right)+\left(\frac{15}{23}+\frac{8}{23}\right)+\frac{4}{19}\)
\(=\left(-1\right)+1+\frac{4}{19}\)
\(=0+\frac{4}{19}=\frac{4}{19}\)
b) \(\frac{7}{19}\cdot\frac{8}{11}+\frac{7}{19}\cdot\frac{3}{11}+\frac{12}{19}\)
\(=\frac{7}{19}\cdot\left(\frac{8}{11}+\frac{3}{11}\right)+\frac{12}{19}\)
\(=\frac{7}{19}\cdot1+\frac{12}{19}\)
\(=\frac{7}{19}+\frac{12}{19}=\frac{19}{19}=1\)
2. a) \(\frac{1}{3}+\frac{\left(-2\right)}{16}-\frac{7}{14}\)
\(=\frac{5}{24}-\frac{1}{2}\)
\(=-\frac{7}{24}\)
b) \(11\frac{3}{13}-2\frac{4}{7}+5\frac{3}{13}\)
\(=\left(11-2+5\right)+\frac{3}{13}-\frac{4}{7}+\frac{3}{13}\)
\(=14+\left(-\frac{10}{91}\right)\)
\(=-14\frac{10}{91}\)
c) \(0,7\cdot2\frac{2}{3}\cdot20\cdot0,375\cdot\frac{5}{28}\)
\(=\frac{7}{10}\cdot\frac{8}{3}\cdot20\cdot\frac{3}{8}\cdot\frac{5}{28}\)
\(=\left(\frac{7}{10}\cdot\frac{5}{28}\right)\cdot\left(\frac{8}{3}\cdot\frac{3}{8}\right)\cdot20\)
\(=\frac{1}{8}\cdot1\cdot20\)
\(=\frac{20}{8}=\frac{5}{2}\)
d) \(\frac{6}{7}+\frac{5}{7}:5-\frac{8}{9}\)
\(=\frac{6}{7}+\frac{1}{7}-\frac{8}{9}\)
\(=1-\frac{8}{9}\)
\(=\frac{1}{9}\)
~Học tốt~