Ba cạnh AB, BC, CA của ∆ ABC tỉ lệ với ba số: 2,5; 2 và 1,5. Tính các cạnh của tam giác đó biết chu vi tam giác là 192m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{^A/3 = ^B/5 =^C/2 = (^A + ^B + ^C)/10 = 180/10 =18 }\)
=> ^A =54o, ^B = 90o, ^C = 36o
=> MNP = 63 độ
a) Ta có: AB,BC,CA tỉ lệ với 4;7;5(gt)
nên AB:BC:CA=4:7:5
hay \(\dfrac{AB}{4}=\dfrac{BC}{7}=\dfrac{CA}{5}\)
Ta có: \(\dfrac{AB}{4}=\dfrac{AC}{5}\)(cmt)
nên \(\dfrac{AB}{AC}=\dfrac{4}{5}\)
Xét ΔABC có
AM là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
mà \(\dfrac{AB}{AC}=\dfrac{4}{5}\)(cmt)
nên \(\dfrac{MB}{MC}=\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{MB}{4}=\dfrac{MC}{5}\)
mà MB+MC=BC(M nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{MB}{4}=\dfrac{MC}{5}=\dfrac{MB+MC}{4+5}=\dfrac{BC}{9}=\dfrac{18}{9}=2\)
Do đó: \(\dfrac{MC}{5}=2\)
hay MC=10(cm)
Vậy: MC=10cm
d) Xét ΔABC có
CP là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)
Xét ΔABC có
BN là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)
Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)
\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)
ta có: AB,AC,BC tỉ lệ với 3;4;5
\(\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{BC}{5}=\frac{AB+AC+BC}{3+4+5}=\frac{24}{12}=2.\)
=> AB = 6 (cm)
AC = 8 (cm)
BC = 10 (cm)
ta có: AB2 + AC2 = 82 + 62 = 100
BC2 = 102 = 100
=> AB2 + AC2 = BC2
=> tg ABC vuông tại A ( đlí py-ta-go đảo)
mà AB < AC
=> ^C < ^B <90 độ
^A = 90 độ
=> ^C < ^B < ^A
Gọi các cạnh của tam giác lần lượt là `x,y,z (x,y,z \ne 0)`
Các cạnh của tam giác lần lượt tỉ lệ với `2:4:5`
Nghĩa là: `x/2=y/4=z/5`
Chu vi các cạnh của tam giác là `44 cm`
`-> x+y+z=44`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/4=z/5=(x+y+z)/(2+4+5)=44/11=4`
`=>`\(\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{4}=4\\\dfrac{z}{5}=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\cdot2=8\\y=4\cdot4=16\\z=4\cdot5=20\end{matrix}\right.\)
Vậy, các cạnh của tam giác lần lượt là `8 cm, 16 cm, 20 cm.`
Gọi số đo các cạnh AB . BC . CA lần lượt là x , y , z ( x , y , z > 0 )
Vì ba cạnh AB, BC, CA của ∆ ABC tỉ lệ với ba số: 2,5; 2 và 1,5 nên \(\frac{x}{2,5}=\frac{y}{2}=\frac{z}{1,5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2,5}=\frac{y}{2}=\frac{z}{1,5}=\frac{x+y+z}{2,5+2+1,5}=\frac{192}{6}=32\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2,5}=32\\\frac{y}{2}=32\\\frac{z}{1,5}=32\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=80\\y=64\\z=48\end{cases}}\)