Giải phương trình: \(\frac{|x+1|}{x}=6\)
~các cậu giúp tớ hộ nhé~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(0\le x\le\frac{3}{2}\)
ĐẶT: \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{3-2x}=b\end{cases}\Rightarrow}a;b\ge0\)
=> \(\hept{\begin{cases}x=a^2\\3-2x=b^2\end{cases}}\)
=> \(2a^2+b^2=3\)
KHI ĐÓ PT BAN ĐẦU SẼ ĐƯỢC: \(9+3ab=7a+5b\)
<=> \(6+3+3ab=7a+5b\) (*)
THAY \(2a^2+b^2=3\)vào PT (*) TA SẼ ĐƯỢC:
=> \(2a^2+b^2+3ab+6=2\left(2a+b\right)+3\left(a+b\right)\)
<=> \(\left(a+b\right)\left(2a+b\right)+6=2\left(2a+b\right)+3\left(a+b\right)\)
<=> \(\left(a+b-2\right)\left(2a+b-3\right)=0\)
<=> \(\orbr{\begin{cases}a+b=2\\2a+b=3\end{cases}}\)
TH1: \(a+b=2\Rightarrow\sqrt{x}+\sqrt{3-2x}=2\)
=> \(x+3-2x+2\sqrt{x\left(3-2x\right)}=4\)
<=> \(2\sqrt{3x-2x^2}=x+1\)
<=> \(4\left(3x-2x^2\right)=x^2+2x+1\)
<=> \(12x-8x^2=x^2+2x+1\)
<=> \(9x^2-10x+1=0\)
<=> \(\left(x-1\right)\left(9x-1\right)=0\)
<=> \(\orbr{\begin{cases}x=1\\x=\frac{1}{9}\end{cases}}\)
=> TA THẤY CÁC GIÁ TRỊ x đều TMĐK.
BẠN TỰ XÉT NỐT TRƯỜNG HỢP 2: \(2a+b=3\Rightarrow2\sqrt{x}+\sqrt{3-2x}=3\) nha
\(P=\frac{x\sqrt{x}-8}{x+2\sqrt{x}+4}+3\left(1-\sqrt{x}\right).\)
\(=\frac{\sqrt{x^3}-2^3}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)
\(=\sqrt{x}-2+3-3\sqrt{x}=-2\sqrt{x}+1\)
\(Q=\frac{2P}{1-P}=\frac{2\left(-2\sqrt{x}+1\right)}{1-\left(-2\sqrt{x}+1\right)}\)
\(=\frac{-4\sqrt{x}+2}{1+2\sqrt{x}-1}=\frac{-2\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{-2\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=-2+\frac{1}{\sqrt{x}}\)
\(Q\in Z\Leftrightarrow-2+\frac{1}{\sqrt{x}}\in Z\Rightarrow\frac{1}{\sqrt{x}}\in Z\)
\(\Rightarrow1\)\(⋮\)\(\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ_1\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)
Vậy \(Q\in Z\Leftrightarrow x=1\)
Áp dụng CT căn phức tạp : \(\sqrt{A\pm\sqrt{B}}=\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\pm\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\)
ĐKXĐ : \(-1\le x\le1\)
Áp dụng CT căn phức tạp , ta được : \(\sqrt{1+\sqrt{1-x^2}}=\sqrt{\frac{1+\sqrt{1-1+x^2}}{2}}+\sqrt{\frac{1-\sqrt{1-1+x^2}}{2}}\)
\(=\sqrt{\frac{1+\left|x\right|}{2}}+\sqrt{\frac{1-\left|x\right|}{2}}=\hept{\begin{cases}\frac{1}{\sqrt{2}}\left(\sqrt{1+x}+\sqrt{1-x}\right)\text{ nếu x }\ge0\\\frac{1}{\sqrt{2}}\left(\sqrt{1-x}+\sqrt{1+x}\right)\text{ nếu x }< 0\end{cases}}\)( kết quả như nhau )
\(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\sqrt{1-x^2}+\left(1-x\right)\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
\(\Rightarrow M=\frac{1}{\sqrt{2}}.\frac{\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)}{2+\sqrt{1-x^2}}\)
\(=\frac{1}{\sqrt{2}}.\left[\left(1+x\right)-\left(1-x\right)\right]=x\sqrt{2}\)
\(\left(x-1\right)^3+\left(2x-1\right)^3=\left(3x-2\right)^3\)
\(\left(3x-2\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(2x-1\right)+\left(2x-1\right)^2-\left(3x-2\right)^2\right]=0\)
\(\left(3x-2\right).\left(-3\right)\left(2x^2-3x+1\right)=0\)
\(\left(3x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy ....
Tôi nghĩ là như này :)) Sai thì chịu nhá :((
Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)
Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)
Nên VP pt (1) cũng phải lớn hơn bằng 0
Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)
Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)
Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)
\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )
Vậy \(x=-2\) thỏa mãn pt.
\(\left|x+1\right|\) | - | + | + | + | + |
3\(\left|x-1\right|\) | - | - | + | + | + |
\(\left|x\right|\) | - | - | - | + | + |
\(2\left|x-2\right|\) | - | - | - | - | + |
PT | 2x-4=5x-2 | 2x-4=5x-2 | -4x+2=2x-2 | -4x+2=-2x+6 |
-1 0 1 2
1) x=-2/3>-1( loại)
2)
Tìm x
\(x^2=36\)
\(x^2=6^2=\left(-6\right)^2\)
\(\Rightarrow x=\pm6\)
Vậy \(x=\pm6\).
\(3x^3=81\)
\(x^3=81\div3\)
\(x^3=27\)
\(x^3=3^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\).
\(\left(4x\right)^2=64\)
\(\left(4x\right)^2=8^2=\left(-8\right)^2\)
\(\Rightarrow\orbr{\begin{cases}4x=8\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy \(x=\pm2\).
\(\left(x-2\right)^2=121\)
\(\left(x-2\right)^2=11^2=\left(-11\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-2=11\\x-2=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=13\\x=-9\end{cases}}\)
Vậy \(x\in\left\{13;-9\right\}\).
\(a,x^2=36\)
\(\Rightarrow x^2=6^2\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
\(b,3x^3=81\)
\(\Rightarrow x^3=81:3\)
\(\Rightarrow x^3=27\)
\(\Rightarrow x^3=3^3\)
\(\Rightarrow x=3\)
\(c,\left(4x\right)^2=64\)
\(\Rightarrow\left(4x\right)^2=8^2\)
\(\Rightarrow\orbr{\begin{cases}4x=8\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(d,\left(x-2\right)^2=121\)
\(\Rightarrow\left(x-2\right)^2=11^2\)
\(\Rightarrow\orbr{\begin{cases}x-2=11\\x-2=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=13\\x=-9\end{cases}}\)
Học tốt
30 : x dư 6 =>30-6 chia hết cho x =>24 : x và x>6 ( viết dấu : thay cho chia hết )
45 : x dư 9 =>45-9 : x =>36 : x và x>9
=>x thuộc ƯC ( 24;36) và x>9
Ta có 24=23.3
36=22.32
=>ƯCLN(24;36)=22.3=12
=>ƯC (24;36)=Ư(12)={1;2;3;4;6;12}
Vì x>9 nên x=12
\(\frac{\left|x+1\right|}{x}=6\)
\(\Leftrightarrow\left|x+1\right|=6x\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6x\\-\left(x+1\right)=6x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}1=5x\\-1=7x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=-\frac{1}{7}\end{cases}}\)
Không hiểu phần nào inb hỏi tớ