K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆ABE có : 

BD là phân giác và là đường cao

=> ∆BAE cân tại B 

=> BA = BE 

Xét ∆ABD và ∆EBD có : 

BD chung 

ABD = EBD 

BA = BE (cmt)

=> ∆ABD = ∆EBD (c.g.c)

=> AD = DE 

b) Vì ∆ABD = ∆EBD (cmt)

=> BAD = BED = 90° 

Hay ∆BED vuông tại E

c) Xét ∆ABC có : 

BAC + ACB + ABC = 180° 

=> ABC = 180° - 90° - 30° = 60°

Mà ∆ABE cân tại A 

=> ∆ABE đều 

a: Xét ΔBAE có

BD là đường cao

BD là đường phân giác

Do đó: ΔBAE cân tại B

b: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó:ΔBAD=ΔBED

Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)

hay ΔBED vuông tại E

c: Ta có: ΔBAD=ΔBED

nên DA=DE

mà DE<DC

nên DA<DC

8 tháng 3 2022

2 ý kai nữa bn ơi

a:

Xét ΔABC có AB<AC

mà \(\widehat{C};\widehat{B}\) lần lượt là góc đối diện của các cạnh AB,AC

nên \(\widehat{ACB}< \widehat{ABC}\)

Ta có: AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}\)

Xét ΔADB có \(\widehat{ADC}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADC}=\widehat{DAB}+\widehat{ABD}=\widehat{DAB}+\widehat{ABC}\)

Xét ΔADC có \(\widehat{ADB}\) là góc ngoài tại đỉnh D

nên \(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)

Ta có: \(\widehat{ADC}=\widehat{BAD}+\widehat{ABC}\)

\(\widehat{ADB}=\widehat{DAC}+\widehat{ACB}\)

mà \(\widehat{BAD}=\widehat{DAC};\widehat{ABC}>\widehat{ACB}\)

nên \(\widehat{ADC}>\widehat{ADB}\)

b: Xét ΔABE có

AD là đường cao

AD là đường phân giác

Do đó: ΔABE cân tại A

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

mà AB<AC

nên DB<DC

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

DO đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

nên DA=DE và \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Ta có: ΔBAE cân tại B

mà BI là đường phân giác

nên BI vừa là đường cao vừa là đường trung tuyến

=>I là trung điểm của AE và BD\(\perp\)AE

=>AI=EI