Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh: \(\frac{a-2b}{b}=\frac{c-2d}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có 2 cách nè:
Cách 1:
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}=\frac{\left(a+b\right)-\left(a-2b\right)}{\left(c+d\right)-\left(c-2d\right)}=\frac{a+b-a+2b}{c+d-c+2d}=\frac{3b}{3d}=\frac{b}{d}\left(1\right)\)
\(\frac{a+b}{c+a}=\frac{a-2b}{c-d}=\frac{2a+2b}{2c+2d}=\frac{2-ab+2a+2b}{c-2d+2c+2d}=\frac{3a}{3c}=\frac{a}{c}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{b}{d}=\frac{a}{c}\) Suy ra: \(\frac{a}{b}=\frac{c}{d}\)
Cách 2:
\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)
\(\Rightarrow\left(a+b\right).\left(c-2d\right)=\left(a-2b\right).\left(c+d\right)\)
\(\Rightarrow a.c-2a.d+b.c-2b.d=a.c+a.d-2b.c-2b.d\)
\(\Rightarrow a.c-a.c-2a.d-a.d+b.c-2b.c-2b.d+2b.d=0\)
\(\Rightarrow-3a.d+3b.d=0\)
\(\Rightarrow3b.c=3a.d\)
\(\Rightarrow b.c=a.d\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)
\(\Rightarrow\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\left(đpcm\right)\)
ta có:
\(\frac{5a+2b}{5a-2b}=\frac{5c+2d}{5c-2d}\Rightarrow\frac{5a+2b}{5c+2d}=\frac{5a-2b}{5c-2d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a-2b}{5c-2d}=\frac{5a+2b}{5c+2d}\)(đpcm)
ta có : ab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bcab=cd⇔ad=bc⇔4ad=4bc⇔2ad+2ad=2bc+2bc
⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd⇔2ad−2bc=2bc−2ad⇔ac+2ad−2bc−4bd=ac+2bc−2ad−4bd
⇔(c+2d)(a−2b)=(a+2b)(c−2d)⇔a+2bc+2d=a−2bc−2d(đpcm)
a)
i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)
\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)
\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)
\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)
Chúc bạn học tốt!
Lời giải:
a)
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$
i. Khi đó:
$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$
$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$
Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)
ii.
$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$
$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$
Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)
b)
Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$
$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$
$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.
Lời giải:
a)
Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$
i. Khi đó:
$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$
$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$
Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)
ii.
$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$
$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$
Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)
b)
Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$
$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$
$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$
Ta có đpcm.
a)
i) theo đề ta có ad=bc
ta có a(c+d) = ac+ad
ta có (a+b)c = ac+bc
mà ad = bc
\(\frac{a}{a+b}=\frac{c}{c+d}\)
các bạn ơi mình không hiểu sao câu ii mình ra thế này
ii) đặt \(\frac{a}{b}=\frac{c}{d}=m\)\(\Rightarrow\)a=mb ; c=dm
Ta có \(\frac{a-b}{c-d}\)= \(\frac{mb-b}{md-d}\)=\(\frac{b\left(m-1\right)}{d\left(m-1\right)}\)=\(\frac{b}{d}\)
Ta có \(\frac{a+c}{b+d}\)=\(\frac{mb+md}{b+d}\)=m
Trả lời :
Mình thấy đề bài kiểu j ý
khó làm lắm
hình như sai đề
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a-2b}{b}=\frac{bk-2b}{b}=\frac{b\left(k-2\right)}{b}=k-2\left(1\right)\)
\(\Rightarrow\frac{c-2d}{d}=\frac{dk-2d}{d}=\frac{d\left(k-2\right)}{d}=k-2\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{a-2b}{b}=\frac{c-2d}{d}\left(\text{đpcm}\right)\)