Tìm giá trị nhỏ nhất của: với x, y, z > 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có 1 = x+y+z = (x+y) +z
Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)
hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)
Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)
Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)
Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16
Giải hệ này ta đc x = y = 1/4 và z = 1/2
Ta có 1 = x+y+z = (x+y) +z
Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z
hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)
Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)
Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ≥16
Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16
Giải hệ này ta đc x = y = 1/4 và z = 1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(P=\frac{x+y}{xyz}=\frac{1}{yz}+\frac{1}{zx}\ge\frac{4}{yz+zx}\) (BĐT Cauchy-Schwarz)
\(=\frac{4}{\left(x+y\right)z}=\frac{4}{\left(1-z\right)z}=\frac{4}{-z^2+z}=\frac{4}{\left(-z^2+z-\frac{1}{4}\right)+\frac{1}{4}}\)
\(=\frac{4}{-\left(z-\frac{1}{2}\right)^2+\frac{1}{4}}\ge\frac{4}{\frac{1}{4}}=16\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=y\\\left(z-\frac{1}{2}\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}}\)
Vậy Min(P) = 16 khi \(\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\)
\(\left(y-z\right)\ge0\Leftrightarrow y^2+z^2\ge2yz\)
\(\left(z-x\right)^2\ge0\Leftrightarrow z^2+x^2\ge2zx\)
\(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\)
Cộng lại vế với vế ta được:
\(3\left(x^2+y^2+z^2\right)+3\ge2xy+2yz+2zx+2x+2y+2z\)
\(\Leftrightarrow Q\ge\frac{2\left(x+y+yz+xy+yz+zx\right)-3}{3}=3\)
Dấu \(=\)khi \(x=y=z=1\).
Ta có: \(x+y+z+xy+yz+xz\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)
=> \(\left(x+y+z\right)^2+3\left(x+y+z\right)\ge3.6=18\)
<=> \(\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
<=> \(\left(x+y+z-3\right)\left(x+y+z+6\right)\ge0\)
<=> \(x+y+z\ge3\)(vì x + y + z + 6 > 0 vì x,y,z > 0)
Do đó: \(Q=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=3\)
Dấu "=" xảy ra<=> x = y= z và x + y + z = 3 <=> x = y = z = 1
Vậy MinQ = 3 <=> x = y= z = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Bổ đề: \(\left(mn+np+pm\right)^2\ge3mnp\left(m+n+p\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2+2mnp\left(m+n+p\right)\ge3mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2\ge mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2-mnp\left(m+n+p\right)\ge0\)\(\Leftrightarrow\left(mn-np\right)^2+\left(np-pm\right)^2+\left(pm-mn\right)^2\ge0\)*đúng*
Vậy bổ đề được chứng minh
Áp dụng vào bài toán, ta được: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)\)hay \(\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)(Do xyz = 1)
\(\Leftrightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\Rightarrow A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)
Đặt \(\frac{1}{xy+yz+zx}=s\)thì \(A\ge3s^2-2s=3\left(s^2-\frac{2}{3}s+\frac{1}{9}\right)-\frac{1}{3}=3\left(s-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
Vậy \(A\ge-\frac{1}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x,y,z>0\\x=y=z\\\frac{1}{xy+yz+zx}=\frac{1}{3}\end{cases}}\Rightarrow x=y=z=1\)
Vậy \(MinA=-\frac{1}{3}\), đạt được khi x = y = z = 1