Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của 3 cạnh AB, BC, AC.
a) Tính độ dài DE, AE. Biết AB = 12 cm, AC = 16 cm
b) Chứng minh tứ giác BEFD là hình bình hành
c) Chứng minh tứ giác ADEF là hình chữ nhật
d) Gọi M là giao điểm của DE và BF, AM cắt DF tại H. Gọi I là trung điểm của đoạn thẳng MF. Chứng minh H,I,C thẳng hàng
a) Xét ∆ABC có :
D là trung điểm AB
E là trung điểm BC
=> DE là đường trung bình ∆ABC
=> DE//AC , DE = \(\frac{1}{2}AC\)= \(\frac{16}{2}=8\)cm
Xét ∆ABC có :
E là trung điểm BC
F là trung điểm AC
=> FE là đường trung bình ∆ABC
=> FE//AB , FE = \(\frac{1}{2}AB=6cM\)
Xét tứ giác AFED có :
AD//EF ( AB//FE , D\(\in\)AB )
DE//FA ( DE//AC , F \(\in\)AC )
=> AFED là hình bình hành
Mà BAC = 90°
=> AFED là hình chữ nhật
=> DEF= EFA = FAD = ADE = 90°
Vì F là trung điểm AC
=> FA = FC = 8cm
Áp dụng định lý Py - ta -go vào ∆AEF ta có :
AE2 = FE2 + AF2
=> AE = 10cm
b) Xét ∆ABC ta có :
D là trung điểm AB
F là trung điểm AC
=> DF là đường trung bình ∆ABC
=> DF//BC
Xét tứ giác BEFD ta có :
BE//DF ( BC//DF , E \(\in\)BC )
BD//FE ( AB//FE , D\(\in\)AB )
=> BEFD là hình bình hành
c) Chứng minh trên