Tìm số nguyên n để 2n+1/n-1 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(n\notin\left\{1;-1\right\}\)
Để \(\dfrac{2n-1}{n^2-1}\in Z\) thì \(2n-1⋮n^2-1\)
=>\(\left(2n-1\right)\left(2n+1\right)⋮n^2-1\)
=>\(4n^2-1⋮n^2-1\)
=>\(4n^2-4+3⋮n^2-1\)
=>\(n^2-1\inƯ\left(3\right)\)
=>\(n^2-1\in\left\{1;-1;3;-3\right\}\)
=>\(n^2\in\left\{2;0;4;-2\right\}\)
mà n là số nguyên
nên \(n^2\in\left\{0;4\right\}\)
=>\(n\in\left\{0;2;-2\right\}\)
Thử lại, ta thấy chỉ có \(n\in\left\{0;2\right\}\) thỏa mãn
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
\(\frac{3-2n}{n+1}=\frac{5+\left(-2\right)+\left(-2n\right)}{n+1}=\frac{5}{n+1}+-2\) nguyên
\(\Leftrightarrow\frac{5}{n+1}\) nguyên \(\Leftrightarrow n+1\inƯ\left(5\right)\)
\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\)
Ta có:
\(\dfrac{2n-1}{2n+3}=\dfrac{2n+3-4}{2n+3}\)\(=1-\dfrac{4}{2n+3}\)
Để \(\dfrac{2n-1}{2n+3}\) là số nguyên thì \(2n+3\inƯ\left(4\right)\)
Ta có bảng:
\(2n+3\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(2n\) | \(-7\) | \(-5\) | \(-4\) | \(-2\) | \(-1\) | \(1\) |
\(n\) | \(-\dfrac{7}{2}\left(loại\right)\) | \(-\dfrac{5}{2}\left(loại\right)\) | \(-2\) | \(-1\) | \(-\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{1}{2}\left(loại\right)\) |
Vậy \(n\in\left\{-2;-1\right\}\)
Để A nguyên thì 2n-1 chia hết cho 2n+3
=>2n+3-4 chia hết cho 2n+3
=>\(2n+3\in\left\{1;-1;2;-2;4;-4\right\}\)
mà n nguyên
nên \(n\in\left\{-1;-2\right\}\)
\(P=\dfrac{n^3+3n^2+2n}{6}+\dfrac{2n+1}{1-2n}\)
Vì n^3+3n^2+2n=n(n+1)(n+2) là tích của 3 số liên tiếp
nên n^3+3n^2+2n chia hết cho 3!=6
=>Để P nguyên thì 2n+1/1-2n nguyên
=>2n+1 chia hết cho 1-2n
=>2n+1 chia hết cho 2n-1
=>2n-1+2 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;2;-2\right\}\)
=>\(n\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)
a: Ta có: \(2n+1⋮n+2\)
\(\Leftrightarrow2n+4-3⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
b: Để B là số nguyên thì \(n+3⋮n-2\)
\(\Leftrightarrow n-2+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
c: Để C là số nguyên thì \(3n+7⋮n-1\)
\(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
Để B là số nguyên thì \(5n+1⋮2n-1\)
\(\Leftrightarrow10n+2⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)
\(\frac{n+1}{2n-1}\inℤ\Rightarrow\frac{2\left(n+1\right)}{2n-1}=\frac{2n-1+3}{2n-1}=1+\frac{3}{2n-1}\inℤ\Leftrightarrow\frac{3}{2n-1}\inℤ\)
\(\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).
Thử lại ta được \(n\in\left\{-1,0,1,2\right\}\)thỏa mãn.
nếu để phân số đó là số nguyên thì :
ta có \(\frac{2n+1}{n-1}\) \(\Rightarrow\frac{2n-2+3}{n-1}\)\(\Rightarrow\frac{2\left(n-1\right)+3}{n-1}\)\(\Leftrightarrow n-1\inƯC\left(3\right)=\left\{-3;-1;1;3\right\}\)
nếu n-1=-3=>n=-4
n-1=-1=>n=-2
n-1=1=>n=0
n-1=3=>n=1
vậy n \(\in\left\{-4;-2;0;1\right\}\)