K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

\(\cot90^0=\tan0^0< \cot61^0=\tan29^0< \tan32^0< \tan50^0< \tan72^0=\cot18^0\)

Bài 1.6

a) \(\cos14^0=\sin76^0\)

\(\cos87^0=\sin3^0\)

Do đó: \(\cos87^0< \sin47^0< \cos14^0< \sin78^0\)

b) \(\cot25^0=\tan65^0\)

\(\cot38^0=\tan52^0\)

Do đó: \(\cot38^0< \tan62^0< \cot25^0< \tan73^0\)

\(\sin70^0>\sin58^0>\sin45^0>\cos67^0>\cos77^0\)

18 tháng 10 2021

\(cos63^0=sin27^0;cos37^0=sin53^0\)

\(\Rightarrow sin53^0>sin44^0>sin35^0>sin27^0\)

\(\Rightarrow cos37^0>sin44^0>sin35^0>cos63^0\)

30 tháng 9 2019

Ta có : \(\tan25=\cot65\)

\(\cot22< \cot50< \cot65< \cot73\)

\(\Rightarrow\cot22< \cot50< \tan25< \cot73\)

16 tháng 2 2017

a, Ta có: cos 88 0 < sin 40 0 (= cos 50 0 ) < cos 28 0 < sin 65 0 (= cos 25 0 ) < cos 20 0

b, Ta có:  cot 67 0 18 ' (= tan 22 0 42 ' ) < tan 32 0 48 ' < tan 56 0 32 ' < cot 28 0 36 ' (= tan 61 0 24 ' )

18 tháng 7 2023

a, Ta có: cos 70 0 (= sin 20 0 ) < sin 24 0 < sin 54 0 < cos 35 0 (= sin 55 0 ) < sin 78 0

b, Ta có: tan 16 0 (= cot 74 0 ) < cot 57 0 67 ' < cot 30 0 < cot 24 0 < tan 80 0 (= cot 10 0 )

27 tháng 10 2019

a, Ta có: cos 70 0 (= sin 20 0 ) < sin 24 0 < sin 54 0 < cos 35 0 (= sin 55 0 ) < sin 78 0

b, Ta có: tan 16 0 (= cot 74 0 ) < cot 57 0 67 ' < cot 30 0 < cot 24 0 < tan 80 0 (= cot 10 0 )

19 tháng 8 2021

a) Ta có: sin30=cos60, sin50=cos40

    Mà cos30 < cos38 < cos40 < cos60 < cos80

    Nên cos30 < cos38 < sin50 < sin30 < cos80

b) Ta có: tan75=cot15, tan63=cot27 => cot11 < tan75 < cot20 < tan63 (1)

         và: sin49=cos41 => cos30 < sin49 (2)

    Lại có: cot11=tan69 > tan49= sin49:cos49 > sin49 (do cos49<1) (3)

    Từ (1), (2) và (3) suy ra: cos30 < sin49 < cot11 < tan75 < cot20 < tan63

   

    

25 tháng 8 2021

TA CÓ   \(\sin30\)\(\cos60\)

             \(\sin50=\cos40\)

---->>  \(\cos30< \cos38< \cos40< \cos60< \cos80\)

------>> \(\cos30< \cos38< \sin50< \sin60< \cos80\)

Cái kia làm tương tự nhoa

Bạn xin 1 cái k

29 tháng 10 2023

4:

\(cos75=sin15;cos18=sin72\)

\(15< 65< 70< 72\)

=>\(sin15< sin65< sin70< sin72\)

=>\(cos75< sin65< sin70< cos18\)

5:

a: Ta có: ΔABC cân tại A 

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=BC/2=6cm

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2+6^2=10^2\)

=>HA2=64

=>HA=8(cm)

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot8\cdot12=4\cdot12=48\left(cm^2\right)\)

b: Xét ΔAHB vuông tại H có

\(sinB=\dfrac{AH}{AB}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

=>\(\widehat{C}\simeq53^0\)