Tìm số A lớn nhất có 3 chữ số biết A chia cho 8, 10, 15, 20 thì có số dư lần lượt là 5, 7, 12, 17
Mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là a ( a \(\in\) N* )
Theo đề ra , ta có :
a chia cho 8 dư 5 \(\Rightarrow a+3⋮8\)
a chia cho 10 dư 7 \(\Rightarrow a+3⋮10\)
a chia cho 15 dư 12 \(\Rightarrow a+3⋮15\)
a chia cho 20 dư 17 \(\Rightarrow a+3⋮20\)
\(\Rightarrow a+3⋮8,10,15,20\Rightarrow a+3\in BC\left(8,10,15,20\right)\)
Ta có : \(8=2^3;10=2.5;15=3.5;20=2^2.5\)
\(\Rightarrow BCNN\left(8,10,15,20\right)=2^3.3.5=120\)
\(\Rightarrow BC\left(8,10,15,20\right)=\left\{0;120;240;...\right\}\)
\(\Rightarrow a+3\in\left\{0;120;240;...\right\}\Rightarrow a\in\left\{0;117;237;...\right\}\)
Mà : a nhỏ nhất \(\ne0\Rightarrow a=117\)
Vậy số tự nhiên cần tìm là 117
Gọi số cần tìm là a
Ta có a : 8 dư 5 => a + 3 ⋮ 8
a : 10 dư 7 => a + 3 ⋮ 10
a : 15 dư 12 => a + 3 ⋮ 15
a : 20 dư 17 => a + 3 ⋮ 20
=>a + 3\(\in\) BC(8,10,15,20)
8 = 23
10 = 2.5
15 = 3.5
20 = 22.5
BCNN(8,10,15,20) = 23.3.5 = 120
=> a + 3 \(\in\) BC(8,10,15,20) = B(120) = {0;120;240;...}
=> a \(\in\) {-3;117;237;...}
Vì a nhỏ nhất nên a = 117
Gọi số cần tìm là a ( a∈Na∈N ; a≤999a≤999 )
Theo bài ra , ta có :
a : 8 dư 7 => ( a+1 ) ⋮⋮ 8
a : 31 dư 28 => ( a+ 3 ) ⋮⋮ 28
Ta thấy ( a+1 ) + 64 ⋮⋮ 8 = ( a+3 ) +62 ⋮⋮ 31
=> a+65 ⋮⋮ 8 và 31
Mà ( 8;31 ) =1
=> a+65 ⋮⋮ 248
Vì a ≤≤ 999 => a+65 ≤≤ 1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn a+65248=4a+65248=4
=> a=927
Vậy số cần tìm là 927
anj vaof caau hoir tuwowng tuwj nha
tự dịch