K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

x48x2+16=2x

\(\Leftrightarrow\sqrt{\left(x^2-4\right)^2}=2-x\)

\(\Leftrightarrow x^2-4=2-x\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

11 tháng 10 2019

x48x2+16=2x

\(\Leftrightarrow\sqrt{\left(x^2-4\right)}=2-x\)

17 tháng 9 2021

\(1.\sqrt{16-8x+x^2}=4-x\)

\(\sqrt{\left(4-x\right)^2}=4-x\)

\(4-x-4+x=0\)

= 0 phương trình vô nghiệm.

\(2.\sqrt{4x^2-12x+9}=2x-3\)

\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)

\(2x-3-2x+3=0\)

= 0 phương trình vô nghiệm.

a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)

\(\Leftrightarrow\left|4-x\right|=4-x\)

hay \(x\le4\)

b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)

\(\Leftrightarrow\left|2x-3\right|=2x-3\)

hay \(x\ge\dfrac{3}{2}\)

12 tháng 8 2019

X=8

X=0

12 tháng 8 2019

 hằng đẳng thức trong căn kìa bạn :3

3 tháng 6 2017
  1. TXD :R => \(\sqrt{x^2-8x+16}-x=2\Leftrightarrow\sqrt{\left(x-4\right)^2}-x=2\)\(\Rightarrow|x-4|-x=2\)
  • Nếu \(x\ge4\)phương trình trở thành \(\Leftrightarrow x-4-x=2\Leftrightarrow-4=2\left(Vl\right)\)
  • Nếu \(x< 4\)phương trình trở thành \(\Leftrightarrow4-x-x=2\Leftrightarrow x=1\)
  1. Câu 2 : Đk \(x\ge0\)ta có \(\sqrt{x}\left(3-2\sqrt{9}+\sqrt{16}\right)=5\Leftrightarrow\sqrt{x}\left(3-2.3+4\right)=5\)\(\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)
6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

28 tháng 9 2017

a)

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)

\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)

Vậy pt có một nghiệm duy nhất là \(x=-1\)

b)

\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)

Lập bảng xét dấu ra nhé ~^o^~

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

ĐK:...........

PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)

\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)

\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)

Thay vào PT(2) ta có:

\(x^2+16x-64=128\)

\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)

Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)

Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)

Vậy $(x,y)=(8,\pm 8)$

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

Ta thấy:

\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)

\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)

Do đó:

\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)

Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)

Vậy.......