Chứng minh các số sau không phải là số chính phương:
a) 20012002 + 23
b) 192n + 5n + 2001
c) (162)1996 + (172)1996 - (132)1996 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Với k = 0 thì A = 1 + 1 + 1 + 1 = 4 = 22, là số chình phương, vô lí
Mk sửa thành k thuộc N*, k chẵn
A = 19k + 5k + 1995k + 1996k
A = (...1) + (...5) + (..5) + (...6)
A = (...6) + (...5) + (...6)
A = (...1) + (...6) = (...7), không là số chình phương
b/ B = 20042004k + 2001
Với k = 0, B = 20042004.0 + 2001 = 20040 +2001 = 1 + 2001 = 2002, không là số chính phương
Với k khác 0, cách 1: Vì 2004 chia hết cho 3 => 20042004k chia hết cho 9 mà 2001 chia hết cho 3 mà không chia hết cho 9
=> B chia hết cho 3 mà không chia hết cho 9, không phải số chính phương
Cách 2: B = 20042004k + 2001
B = (20044)501k + 2001
B = (...6)501k + 2001
B = (...6) + 2001
B = (...7), không là số chính phương
Số chính phương là số nguyên có căn bậc 2 là một số nguyên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số nguyên khác.
Công thức!
Lập luận văn nói ta sẽ có:
\(=2001^{2001}-1997^{1996}\)
\(=\left(....1\right)-\left(....1\right)\)(Vì chữ số tận cùng là 1 nên lũy thừa lên ko thay đổi,tận cùng là 7 lũy thừa 4n tận cùng là 1 mà 1996 chia hết cho 4 nên ta viết được biểu thức trên)
\(=\left(...0\right)\)chia hết cho 10.
Chúc em học tốt^^
Khi k bình thì sẽ là số chính phương !
Voi a, 19.k+5.k+1995.k+1996.k thì 4015 +k =4kkk+0kk+1k+5
Ta có thể nói 4kkk+0kk+1k+5 không thể la so chinh phuong (4kkk+0kk+1k+5 = 4k+0+k+5=5k+5),5k la so chinh phuong nhung 5 khong la so chinh phuong
Voi b,2004.2004k+2003=2kkk+0kk+0k+4+2003 = 2kkk+4+2003 (Ta noi 2kkk va 4 la so chinh phuong nhug 2003 ko phai so chinh phuong
Tick mih nhe chuan 100% day
\(M=19^{2k}+5^{2k}+1995^{2k}+1996^{2k}\left(k\in N;k>0\right)\)
\(\Rightarrow M=\overline{.....1}+\overline{.....5}+\overline{.....5}+\overline{.....6}\)
\(\Rightarrow M=\overline{......7}\)
Vì \(M\) có chữ số tận cùng là chữ số \(7\)
Nên \(M\) không phải là số chính phương.
\(\left(3k+1\right)^2=9k^2+6k+1chia3du1\)
\(\left(3k+2\right)^2=9k^2+12k+4chia3du1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(16^2\right)^{1996}\equiv1\left(mod3\right)\\\left(17^2\right)^{1996}\equiv1\left(mod3\right)\\\left(13^2\right)^{1996}\equiv1\left(mod3\right)\end{matrix}\right.\Rightarrow\left(16^2\right)^{1996}+\left(17^2\right)^{1996}-\left(13^2\right)^{1996}+1\equiv1+1-1+1\equiv2\left(mod3\right)\Rightarrow dpcm\)
Ta co:
\(2001⋮3\Rightarrow2001^{2002}⋮3\) mà \(23\) chia 3 dư 2
\(\Rightarrow2001^{2002}+23\) chia 3 dư 2 \(\Rightarrow dpcm\)
b,
\(+,n=0\Rightarrow19^{2n}+5^n+2001=1+1+2001=2003\left(notscp\right)\)
\(+,n>0\Rightarrow19^{2n}+5^n+2001=361^n+5^n+2001=\left(...1\right)+\left(....5\right)+2001=\left(...7\right)\Rightarrow klscp\)