So sánh(không dùng bảng số hoặc máy tính)
a)căn 5+căn 7 và căn 13
b)16 và căn 15 . căn 17
c)căn 2015+căn 2017 và 2.căn 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{26}+3\right)^2=35+6\sqrt{26}\)
\(\left(\sqrt{63}\right)^2=63=35+28\)
mà \(6\sqrt{26}>28\)
nên \(\sqrt{26}+3>\sqrt{63}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
\(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
căn 2016+căn 2015>căn 2015+căn 2014
=>1/(căn 2016+căn 2015)<1/(căn 2015+căn 2014)
=>căn 2016-căn 2015<căn 2015-căn 2014
Giả sử \(8>\sqrt{15}+\sqrt{17}\)
\(\Leftrightarrow64>32+2\sqrt{15×17}\)
\(\Leftrightarrow16>\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\left(dung\right)\)
Vậy \(8>\sqrt{15}+\sqrt{17}\)
dsadasdsadsadsasddấdasdasdadấdadsdsđasdasđdsaádasdasdádaddadadaddadadaddâdadaad
\(8=\sqrt{64}\)
vì 64>63
8>căn 63
\(13=\sqrt{169}\)
vì 170>169
căn 170 > 13
\(15=\sqrt{225}\)
vì 225<227
15 < căn 227
c) Bình phương hai vế ta được 2015+2017+2\(\sqrt{2015\times2017}\) và 4\(\times\)2016
Ta có 2015 + 2017 + 2\(\sqrt{2015\times2017}\)
= (2016-1) + (2016+1) + 2\(\sqrt{2015\times2017}\)
= 2016 + 2016 + 1 - 1 + 2\(\sqrt{2015\times2017}\)
= 2\(\times\)2016 + 2\(\sqrt{2015\times2017}\) (1)
ta thấy 2015 \(\times\) 2017 =(2016-1) \(\times\) (2016+1)= 20162 - 1
nên (1) \(\Leftrightarrow\)2\(\times\)2016 + 2\(\sqrt{2016^2-1}\)
Ta có 4\(\times\)2016=2\(\times\)2016 + 2\(\times\)2016=2\(\times\)2016 + 2\(\sqrt{2016^2}\)
Vì 20162-1 < 20162 nên 2\(\sqrt{2016^2-1}\) < 2\(\sqrt{2016^2}\)
\(\Leftrightarrow\) 2\(\times\)2016 + 2\(\sqrt{2016^2-1}\) < 2\(\times\)2016 + 2\(\sqrt{2016^2}\)
\(\Leftrightarrow\)2015+2017+2\(\sqrt{2015\times2017}\) < 4\(\times\)2016
Hay \(\sqrt{2015}+\sqrt{2017}\) < \(2\sqrt{2016}\)
a) Bình phương hai vế ta được 5+7+\(2\sqrt{5\times7}\) và 13.
Ta có 5+7+\(2\sqrt{5\times7}\) =12+\(2\sqrt{35}\)
13=12+1=12+\(2\times\frac{1}{2}\) =12+\(2\sqrt{\frac{1}{4}}\)
Vì 35 > \(\frac{1}{4}\) nên \(\sqrt{35}\) > \(\sqrt{\frac{1}{4}}\) \(\Leftrightarrow\)2\(\sqrt{35}\) > \(2\sqrt{\frac{1}{4}}\) \(\Leftrightarrow\)12+2\(\sqrt{35}\) > 12+\(2\sqrt{\frac{1}{4}}\)
Hay\(\sqrt{5}\)+\(\sqrt{7}\) > \(\sqrt{13}\)