X + 1/2 + A + 2/9 + G + 3/4
X + A - G =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
a) G(x) = 2x5-4x4-10x3+3x2-4x-8
H(x) = x5-2x4-5x3+x2+7x-4
b) G(x)+H(x)=3x5-6x4-15x3+4x2+3x-12
G(x)-H(x) =x5-2x4-5x3+2x2-11x-4
c) G(x) = 2H(x)
2x5-4x4-10x3+3x2-4x-8=2( x5-2x4-5x3+x2+7x-4)
2x5-4x4-10x3+3x2-4x-8-2( x5-2x4-5x3+x2+7x-4)=0
2x5-4x4-10x3+3x2-4x-8-2x5+4x4+10x3-2x2-14x+8=0
x2-18x=0
x(x-18)=0
x=0 hoặc x-18=0
x=18
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(x^2+6x+9=\left(x+3\right)^2\)
d) \(4x^2+4x+1=\left(2x+1\right)^2\)
e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)
f) \(4x^2+12x+9=\left(2x+3\right)^2\)
g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)
h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)
a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2
b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2
c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2
d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2
a)
\(A=x^2-x+1=x^2-2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}\)
\(=(x-\frac{1}{2})^2+\frac{3}{4}\)
Vì $(x-\frac{1}{2})^2\geq 0, \forall x$
$\Rightarrow A=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy GTNN của biểu thức là $\frac{3}{4}$. Giá trị này đạt được khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
b)
\(B=4x^2+y^2-4x-2y+3\)
$=(4x^2-4x+1)+(y^2-2y+1)+1$
$=(2x-1)^2+(y-1)^2+1$
$\geq 0+0+1=1$
Vậy GTNN của $B$ là $1$. Giá trị này đạt được khi \(\left\{\begin{matrix} (2x-1)^2=0\\ (y-1)^2=0\end{matrix}\right.\Leftrightarrow x=\frac{1}{2}; y=1\)
c)
\(C=x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}\)
\(=(x+\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}\)
Vậy GTNN của $C$ là $\frac{3}{4}$. Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}$
a. \(x^2-4x+4=x^2-2.x.2+2^2=\left(x-2\right)^2\)
b. \(x^2-4y^2=x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)
c. \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)
d. \(x^3-3x^2+3x-1\)
\(=x^3-1^3-3x^2+3x\)
\(=\left(x-1\right)\left(x^2-x+1\right)-3x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x+1-3x\right)\)
\(=\left(x-1\right)\left(x^2-4x+1\right)\)
e. \(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)
g. \(4x^2+12xy+9y^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2=\left(2x+3y\right)^2\)
Bài 1 ( a )
\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)
\(=-x^3-2x^2+5x-7\)
\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)
\(=-3x^4+x^3+10x^2-7\)
Bài 1 ( b )
\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)
\(=3x^4-2x^2+15x-14\)
\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)
\(=-3x^4-2x^3-5x\)