rút gọn biểu thức P=\(1-\frac{1}{4}\left(x:\frac{1}{10}-\frac{15}{4}\right)-2\left|3x-4\right|\) khi:
a) x \(\ge\frac{4}{3}\)
b) x < \(\frac{4}{3}\)
nhanh nhanh lên hộ
rồi tích cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nghĩ bạn chép sai đề hình như đề bài phải là \(A=\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\)
ta xét \(A^3=\left(\sqrt[3]{\frac{x^3-3x+\left(x^2-1\right)\sqrt{x^2-4}}{2}}+\sqrt[3]{\frac{x^3-3x-\left(x^2-1\right)\sqrt{x^2-4}}{2}}\right)^3\)
<=> \(A^3=x^3-3x+3A\cdot\sqrt[3]{\frac{4}{4}}\)
<=> \(A^3=x^3-3x+3A\)
<=> \(A^3-3A-x^3+3x=0\)
<=>\(\left(A^3-x^3\right)-3A+3x=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2\right)-3\left(A-x\right)=0\)
<=> \(\left(A-x\right)\left(A^2+Ax+x^2-3\right)=0\)
<=> \(\orbr{\begin{cases}A=x\\A^2+Ax+x^2-3=0\end{cases}}\)(vô lí )
vậy \(A=x\)
\(P=4\left(\frac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\)
\(=4.\frac{3}{4}x-4.1+12x^2:\left(-3x\right)+\left(-3x\right):\left(-3x\right)-2x-1\)
\(=3x-4-4x+1-2x-1=-3x-4\)
Thay \(x=\frac{-4}{3}\)vào P ta được \(P=-3.\frac{-4}{3}-4=4-4=0\)
a) \(P=1-\frac{1}{4}\left(10x-\frac{15}{4}\right)-6x+8\)
\(P=\frac{159}{16}-\frac{17x}{2}\)
b) \(P=1-\frac{1}{4}\left(10x-\frac{15}{4}\right)-8+6x\)
\(P=\frac{7x}{2}-\frac{97}{16}\)